
Embarrassingly Parallel

By: Noureddin Sadawi
20/02/2019

Brunel University London
https://goo.gl/TJyhmL

https://goo.gl/TJyhmL

Contents
● Concurrency vs Parallelism
● Ideal Parallelism
● Example Parallelisation Approaches
● Memory Coalescing (Matrix Multiplication)
● Several Example Parallel Problems/Techniques
● Parallelism at Multiple Levels
● Measuring Scaling Performance

time permitting:
● The KubeNow Project
● The H2O Platform

Concurrency vs Parallelism
● Concurrency/Multithreading: is when two or more tasks can start, run, and complete in

overlapping time periods. It doesn't necessarily mean they'll ever be running at the same instant. Eg.
multitasking on a single-core machine.

● Parallelism: is when tasks literally run at the same time, eg. on a multicore processor.

Quoting Oracle's Multithreaded Programming Guide:

● Concurrency: A condition that exists when at least two threads are making progress. A more
generalized form of parallelism that can include time-slicing as a form of virtual parallelism.

● Parallelism: A condition that arises when at least two threads are executing simultaneously.

Java Concurrency and Multithreading Tutorial:
http://tutorials.jenkov.com/java-concurrency/index.html

https://stackoverflow.com/a/1050257

https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html
http://tutorials.jenkov.com/java-concurrency/index.html
https://stackoverflow.com/a/1050257

Ideal Parallelism
● An ideal parallel computation can be immediately divided into completely

independent parts
○ “Embarrassingly parallel”
○ “Naturally parallel”

● No special techniques or algorithms required

https://www.cs.fsu.edu/~engelen/courses/HPC/Algorithms1.pdf

https://www.cs.fsu.edu/~engelen/courses/HPC/Algorithms1.pdf

 Parallelisation Approaches

● Model Parallelism: different
machines in the distributed system
are responsible for the computations
in different parts of a single network -
for example, each layer in the neural
network may be assigned to a
different machine

● Data Parallelism: different machines
have a complete copy of the model;
each machine simply gets a different
portion of the data, and results from
each are somehow combined.

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

Memory Coalescing 1/2
● 2D matrices are represented as

vectors in memory
● Take two square Matrices A and B,

we want to: A.B
● When Multiplying Matrices, we make

expensive moves in B

1 2 3

4 5 6

7 8 9

1 2 3 4 5 6 7 8 9a1 a2 a3

a4 a5 a6

a7 a8 a9

b1 b2 b3

b4 b5 b6

b7 b8 b9

This jump is expensive

Memory Coalescing 2/2
● Square Matrix Multiplication in Java
● Transpose B
● Move row by row instead of column

by column

HPC Usage Example 1:
● Task - Permutation test

○ Data: one dataset -> created 10k datasets by randomising the variables (not the outcome)
○ Run linear regression with 10 fold cross validation on each dataset to obtain a score (e.g.

RMSE)

● Performance:
○ When done sequentially, using 1 core, 10k datasets took > 83 hours
○ When parallelising the task, using a HPC cluster, 10k datasets took < 83 minutes

HPC Usage Example (The ChemDistiller Project):
● Task - Compute Fingerprints for ~130 Million

Chemical Compounds
● Data: 13k files, each containing 10k compounds

○ Input compound representation: SMILES

● Performance:
○ Using 1 core, in average, 1 file takes ~ 8 hours, up to 24

hours for files with larger molecules
○ When done sequentially, using 1 core, the 130M compounds

would finish in > 11 YEARS (1-2 years using 8 cores)
○ When parallelising the task, using a HPC cluster, 130M

compounds took ~ 22 days

ChemDistiller: an engine for metabolite annotation in mass spectrometry
https://academic.oup.com/bioinformatics/article/34/12/2096/4852828

https://academic.oup.com/bioinformatics/article/34/12/2096/4852828

Cross Validation

● A model is trained using k-1 of

the folds as training data

● The resulting model is

validated on the remaining part

of the data (i.e., it is used as a

test set to compute a

performance measure such as

accuracy).

Random Forest
● Random forest algorithm is a supervised classification algorithm. As

the name suggests, this algorithm creates the forest with a number
of trees

○ In general, the more trees in the forest the more robust the
forest looks like.

● Bootstrapping algorithm with Decision tree (CART) model.
● Say, we have n observations in the complete population with m

variables.
● Random forest tries to build multiple CART models with different

samples and different initial variables.
○ For instance, it will take a random sample of i observations and j randomly chosen initial

variables to build a CART model (j << m).
○ It will repeat the process (say) k times and then make a final prediction on each observation.
○ Final prediction can simply be the mean (or mode) of each prediction.

Random Forest

Random Forest

Random Forest

Analysing Very Large Files

● Map functions can run in
parallel and pass their results
to Reduce functions

● Results are output in sorted
order by the keys created by
the reduce function

● Sorting very large files?

http://selkie.macalester.edu/csinparallel/modules/IntroWMR/build/html/MapReduceIntro/MapReduceIntr
o.html

http://selkie.macalester.edu/csinparallel/modules/IntroWMR/build/html/MapReduceIntro/MapReduceIntro.html
http://selkie.macalester.edu/csinparallel/modules/IntroWMR/build/html/MapReduceIntro/MapReduceIntro.html

Neural Nets Parameter Averaging

1. Initialize the network parameters randomly based on the
model configuration

2. Distribute a copy of the current parameters to each worker
3. Train each worker on a subset of the data
4. Set the global parameters to the average the parameters

from each worker
5. While there is more data to process, go to step 2

- Steps 2 through 4 are demonstrated in the diagram
- W represents the parameters (weights, biases) in the neural network
- Subscripts are used to index the version of the parameters over time,

and where necessary for each worker machine

Correlation Matrix

Parallelism at Multiple Levels

● Sometimes the problem at hand is parallelizable at more
than one level

● A typical example is when we want to run a parallel
algorithm several times

● An example is to run RandomForest on thousands of
datasets

● Which level do we choose?

Measuring Scaling Performance

Strong Scaling:

● Fixed data size (ex: 10000 datasets)
● Change number of parallel

processes
● Check performance

Metrics:

● Speedup Scaling Efficiency

Weak Scaling:

● Variable data size (ex: 10, 100,
1000, 10000 datasets)

● Number of parallel processes
changes with data size

● Check performance

Summary

1. Embarrassingly Parallel problems are everywhere
2. It is a mindset .. a way of thinking about problem solving
3. Plenty of platforms
4. Sometimes it is a matter of mapping the problem into a format that a parallel

platform can process
5. Many real life examples show it is worth the effort!

● A cloud agnostic platform for
microservices, based on
Docker and Kubernetes

● Fast Kubernetes operations
● Helps you in lifting your final

application configuring DNS
records and distributed
storage

https://github.com/kubenow/KubeNow

https://github.com/kubenow/KubeNow

kn

kn-destroy

kn-apply

kn-az,gce

kn-ansible

kn-ssh

kn-helm

kubectl

helm

DockerHub

Deploy PhenoMeNal with KubeNow

https://goo.gl/jZx5sn

Jupyter

Luigi

Kubernetes Dashboard

H2O.ai
● Founded in 2012, Mountain View, CA Stanford Math & Systems Engineers
● It is produced by the company H2O.ai (formerly 0xdata)
● Open Source Software
● Ease of Use via Web Interface or API
● Cutting Edge Machine Learning Algorithms
● R, Python, Scala, Spark & Hadoop Interfaces Distributed Algorithms Scale to Big Data
● Simple deployment without intermediary transformations
● In-Memory Parallel Processing

● https://github.com/h2oai
● http://docs.h2o.ai
● https://www.stat.berkeley.edu/~ledell/docs/h2o_hpccon_oct2015.pdf

https://github.com/h2oai
http://docs.h2o.ai
https://www.stat.berkeley.edu/~ledell/docs/h2o_hpccon_oct2015.pdf

H2O Community

H2O: Current Algorithm Overview

H2O Scalability

Thank you

