Embarrassingly Parallel

By: Noureddin Sadawi
20/02/2019

Brunel University London
https://goo.gl/TJyhmL

https://goo.gl/TJyhmL

Contents

Concurrency vs Parallelism

|deal Parallelism

Example Parallelisation Approaches

Memory Coalescing (Matrix Multiplication)
Several Example Parallel Problems/Techniques
Parallelism at Multiple Levels

Measuring Scaling Performance

time permitting:
The KubeNow Project
The H20 Platform

Concurrency vs Parallelism

e Concurrency/Multithreading: is when two or more tasks can start, run, and complete in

overlapping time periods. It doesn't necessarily mean they'll ever be running at the same instant. Eg.
multitasking on a single-core machine.

e Parallelism: is when tasks literally run at the same time, eg. on a multicore processor.

https://stackoverflow.com/a/1050257

Quoting Oracle's Multithreaded Programming Guide:

e Concurrency: A condition that exists when at least two threads are making progress. A more
generalized form of parallelism that can include time-slicing as a form of virtual parallelism.
e Parallelism: A condition that arises when at least two threads are executing simultaneously.

Java Concurrency and Multithreading Tutorial:
http://tutorials.jenkov.com/java-concurrency/index.html

https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html
http://tutorials.jenkov.com/java-concurrency/index.html
https://stackoverflow.com/a/1050257

Ideal Parallelism

e An ideal parallel computation can be immediately divided into completely

independent parts

o “Embarrassingly parallel’
o “Naturally parallel”

e No special techniques or algorithms required
input

result

https://www.cs.fsu.edu/~engelen/courses/HPC/Algorithms1.pdf

https://www.cs.fsu.edu/~engelen/courses/HPC/Algorithms1.pdf

Parallelisation Approaches

Model Parallelism: different
machines in the distributed system
are responsible for the computations
in different parts of a single network -

Model Parallelism

for example, each layer in the neural | Machine 4 :

network may be assigned to a L s .
different machine iMammez []55[

Data Parallelism: different machines '““}’-’-’-’-_’-’-’-’--?é‘-"-'ié'-?i. “““““““
have a complete copy of the model; 5Macnme1 i

each machine simply gets a different
portion of the data, and results from
each are somehow combined.

Data Parallelism

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

Memory Coalescing 1/2

e 2D matrices are represented as
vectors in memory

e Take two square Matrices A and B,
we want to: A.B

e \When Multiplying Matrices, we make
expensive moves in B

—

al a2 | a3 b1 | b2 | b3

a4 a5 | a6 b4 | b5 b6

ar’ a8 | a9 b7 | b8 | b9

This jump is expensive

1 2 |3
7 8 9

[

U

1

IR

Memory Coalescing 2/2

e Square Matrix Multiplication in Java
e Transpose B
e Move row by row instead of column Matrix Multiplication Comparison

- Naive

by CO|Umn 1400000 1 — (oalesced
1200000 -

1000000 A
800000 -

600000 -

Time in Seconds

400000

200000 A

//

0.

0 1000 2000 3000 4000 5000
Sq Matrix Dimension

HPC Usage Example 1:

e Task - Permutation test
o Data: one dataset -> created 10k datasets by randomising the variables (not the outcome)
o Run linear regression with 10 fold cross validation on each dataset to obtain a score (e.g.
RMSE)
e Performance:
o When done sequentially, using 1 core, 10k datasets took > 83 hours
o When parallelising the task, using a HPC cluster, 10k datasets took < 83 minutes

HPC Usage Example (The ChemDistiller Project):

. . A Experimental data Chemical database ChembDistiller
e Task - Compute Fingerprints for ~130 Million il'ﬂ?h, .":iom,a. I ——
Chemical Compounds é .L '
e Data: 13k files, each containing 10k compounds C | 71/]
o Input compound representation: SMILES % | (‘
e Performance: TR [[= | ==
o Using 1 core, in average, 1 file takes ~ 8 hours, up to 24 o= L%w‘
hours for files with larger molecules == ::_ -
o When done sequentially, using 1 core, the 130M compounds EZ —

would finish in > 11 YEARS (1-2 years using 8 cores) Macine Laariog = F—%mpi J
o When parallelising the task, using a HPC cluster, 130M [E

| Training spectra
— || Verified annotations

compounds took ~ 22 days

=
NIST 14, HM0B _|

r BT,
— Report || T~
__MassBank | generator

ChembDistiller: an engine for metabolite annotation in mass spectrometry
https://academic.oup.com/bicinformatics/article/34/12/2096/4852828

https://academic.oup.com/bioinformatics/article/34/12/2096/4852828

Cross Validation

e A model is trained using k-1 of
the folds as training data
e The resulting model is

validated on the remaining part

of the data (i.e., itis used as a
test set to compute a
performance measure such as

accuracy).

Random Forest

Random forest algorithm is a supervised classification algorithm. As
the name suggests, this algorithm creates the forest with a number All Data

oftrees subset il subset_

o In general, the more trees in the forest the more robust the

tree tree tree

forest looks like. @ 4
Bootstrapping algorithm with Decision tree (CART) model. /\ /\ ./\
Say, we have n observations in the complete population with m 7\. E 3 7\

variables. am A4 s
Random forest tries to build multiple CART models with different
samples and different initial variables.
o For instance, it will take a random sample of i observations and j randomly chosen initial
variables to build a CART model (j << m).
o It will repeat the process (say) k times and then make a final prediction on each observation.
Final prediction can simply be the mean (or mode) of each prediction.

Random Forest

All Data
subset

tree
4
/\

e

Random Forest

All Data

subset subset

tree tree
@ <
LT i
¢ o Ny
A N

Random Forest

All Data
subset subset subset
tree tree tree

@ ¢ ¢
AR
o8 o o He
A AN

Analysing Very Large Files

e Map functions can run in
parallel and pass their results
to Reduce functions

e Results are output in sorted
order by the keys created by
the reduce function

e Sorting very large files?

ap

. map

S0aps

<ep,

=Jap.
<nap.

gL R

900027, 3,
Be08i7.3,

Key, value pairs

-1,
WNT, Y,
W00027.3,
300011, 1
009337,
Wo09il,),
0001),

— K1, vl

008333,
00033.,
00031, 3,
300053,),
300033 4,
3000334,
0000334,
300003)..4,
300011.4,

> Ki, vl

3900053,4,
00833,4,
20008335,
5900073..),
300033, 3,
39000353,
000354,
20000354,
2000555,
30033.3,
29000353,
39000353,
3900034, 3,

> K2, v4

—> K1,v2

W00 3,

_reduce =

3500911
300011,4,
B0003) ¢,
00334
w00, &
200011 4,
0011
et

nd L

= =T 00154
00055 . 4
25 \ Kh. v reduce e,

’ 390055, 5,
30000353,
00N, 3,

!

—> K1,v3 freduc;

http://selkie.macalester.edu/csinparallel/modules/IntroWMR/build/html/MapReducelntro/MapReducelntr

o0.html

http://selkie.macalester.edu/csinparallel/modules/IntroWMR/build/html/MapReduceIntro/MapReduceIntro.html
http://selkie.macalester.edu/csinparallel/modules/IntroWMR/build/html/MapReduceIntro/MapReduceIntro.html

Initialize the network parameters randomly based on the
model configuration

Distribute a copy of the current parameters to each worker
Train each worker on a subset of the data

Set the global parameters to the average the parameters
from each worker

While there is more data to process, go to step 2

Steps 2 through 4 are demonstrated in the diagram

W represents the parameters (weights, biases) in the neural network
Subscripts are used to index the version of the parameters over time,
and where necessary for each worker machine

Neural Nets Parameter Averaging

i
Parameter Server: W, , =} W, .
=z & Wiy

A A
it W2 Wiia
W, W,
Y o _ Y _

W B NG LR WN R

B e e
[TR TR S S)

17

orrelation Matrix

A
probeset
1007_s_at
1053_at
117_at
121 _at
1255_g at
1294 at
1316_at
1320_at
1405_i_at
1431_at
1438_at
1487_at
1494 f at
1552256 _a_at
1552257_a_at
1552258 at

221.5
157.5
25.5
113.3
5.6
28.3
97.8
16.1
15.7
15.1
38.6
91.4
35.3
117
245.7

]

82.1
1384
39.3
95.6
54.9
56.3
26.1
33.2
64.1

B C D E | E G H
ITCCO600 ITCCO601 ITCCO602 ITCCO604 ITCCO607 ITCCO608 ITCCO609 ITCCO611 itcc0001

430.8 226.1 130.6 75 54.9 195.5 124.8
79.5 95:7, 178.8 185.8 144.7 113.1 150.2
65.9 14.9 1.8 28.7 4.7 35.2 3
203.3 79.4 74.1 60.3 79.7 54.5 60.1
5 129.8 177.8 291.1 192.4 20 255.4
114.6 57.1 40.1 37.1 44.2 50.9 40.4
113 92.7 115.1 106.5 63.5 103.6 121.6
12.1 17.9 17 1 2.2 11.2 17.2
313.8 1354 26.1 89.8 164.4 223.2 81
18.8 13.7 16.2 8.6 8.2 66 10.3
24 51.9 52 9.4 22 6.2 8.3
94 88.9 96 52.1 98.3 67.8 92
30 18.8 33 49 34 335 44.9
334 55.5 57.9 53.1 52 60.2 63.7
109.2 78.6 70 83.8 62.7 97.1 73.4
31.2 8.3 5.3 20.3 7 20.7 35

22.7

K
itcc0002

57.5
140.7
17.3
85.8
56.6
51.6
33.2
58.1
29
14.2
193.6
99.1
229
79.1
1134
12.2

L
itcc0003

67.1
198.1
23.7
80.1
63.8
38.6
27
27.4
13
79.8
315
160.7
19.8
185.9
151.9
11.5

M
itcc0008

174
123.7
39.7
819
61.2
127.8
33.5
14.3
406.7
12.5
107.6
106.4
18.7
187.1
117.9
249

N
itcc0009

55.8
254.8
4.1
72.7
300
44
24
46.6
28.9
15.1
59.1
54.8
19.8
137.1
112.2
27.3

(o]
itcc0010

143.6
1304
29.8
91.9
411
7.4
17.3
37.9
149.7
7.4
100.6
84.4
17
143.8
175.1
18.7

P
itcc0013
110.2
161.5
64.1
112.1
40.9
83.8
52.9
40.4
233.3
20.9
120.6
101.6
29.1
251.8
159.7
16.5

ECRETS S T BEN A2.0 sa s EVE] 12.7 A5 190 152 107 278 aa 209 129 12.9 249

Parallelism at Multiple Levels

e Sometimes the problem at hand is parallelizable at more
than one level

e A typical example is when we want to run a parallel
algorithm several times

e An example is to run RandomForest on thousands of
datasets

e \Which level do we choose?

Measuring Scaling Performance

Strong Scaling: Weak Scaling:
e Fixed data size (ex: 10000 datasets) ® Variable data size (ex: 10, 100,
e Change number of parallel 1000, 10000 datasets)
processes e Number of parallel processes
e Check performance changes with data size

e Check performance

Metrics:

e Speedup s(n)= % Scaling Efficiency E(S) = nIT‘ = S(:-)

Summary

Embarrassingly Parallel problems are everywhere

It is @ mindset .. a way of thinking about problem solving

Plenty of platforms

Sometimes it is a matter of mapping the problem into a format that a parallel
platform can process

5. Many real life examples show it is worth the effort!

e

KubeNow

e A cloud agnostic platform for
microservices, based on
Docker and Kubernetes

e Fast Kubernetes operations S

e Helps you in lifting your final . &
application configuring DNS
records and distributed
storage

https://github.com/kubenow/KubeNow

https://github.com/kubenow/KubeNow

Deploy PhenoMeNal with KubeNow (2 PhenoMeNal

Large-Scale Computing for Medical Metabolomics

& KubeNow https://goo.gl/jZx5sn

kn-destroy gy

DockerHub

kn-az,gce
- 3 O
. kn-ansible = ansiece e
. EE——— kubectl
H o Mestee ‘ heIm

= @ o \ o \
: 20
kn-helm 20 . (

NNNNNNNNN

Jupyter

0 | ® Not secure | notebook.193.62.55.23.nip.io/edit/MTBLS233 /batman/script.sh#
B career B BioMediA B life Bm EE B Imperial College B8 PhenoMeNal Bm Azure BE Programming B Machinelearnii W Contiki » I

= Jupyter script.sh v 6minutes ago

File

Edit View Language

#1/bin/bash
export PYTHONPATH=./

#numberw=(1 5 10 25 50 100 200 2560 400 500) #for 2 spectra per file
#numberw=(1 5 10 26 25 40 50) #for 20 spectra per file
numberW=(100) #for 10 spectra per file

for number in "${numberw[@]}" ; do

echo "No of Parallel Tasks = $number"

echo $PWD

#utime="$(TIMEFORMAT='%lU'; luigl --module workflow ProcessDatasets --scheduler-host luigi.default --workers $number)"”
#echo Sutime >> times.csv

START=$ (date +%s)

luigi --module batman DoBatman --scheduler-host luigi.default --workers $number
END=$(date +%s)

DIFF=$(($END - $START))

END=$(date +%Y-%m-%d-%H-%M-%S)

echo "With $number of workers, jobs ended at $END. It took $DIFF seconds" >> times.csv
#echo $DIFF >> times.csv

#remove the BATMAN running folders to enable next run

cd data

rm -rf $(ls -I "NMRdata*.txt" -I “results*" -D |grep '[©-8]-[0-9]"')

#END=$ (date +%Y-%m-%d-%H-%M-%S)

#mv results results-$number-workers-$END

if ["$(ls results/*.pdf |wc -1)" == 1000]; then rm -rf results; else mv results results-$number-workers-$END; fi

ol ...
#number=$ ((number + 10))
#rm -f data/*.out

wlhin -7 FT€oULLS.CoV

index.htm

C 0 ® ligi.193.62.55.23.nip.io/st
Apps Bm career @B BioMedlA Wm life @@ EE B Imperial College B PhenoMeNal @ Azure BB Programming B Machine Learn B Contiki

LUIgI Task Status = Task List Dependency Graph Workers Resources

Hide Done

DoBatman()
Dependency Graph

Failed
Running

Batch Running
Pending

Done

Disabled

Unknown

Truncated

Kubernetes Dashboard

- C)} | ® dashboard.193.62.55.23.nip.io/#!/pod?namespace=default e
! Apps B career B BioMedlA Bm life B8 EE B Imperial College B8 PhenoMeNal B8 Azure B Programming B MachineLearnic W@ Contiki » [m Other bookmark:
kubernetes Q Search + CREATE

Cluster
1.08 k 838 Gi
Namespaces 960 & 745G
2] 3
Nodes g 720 z 5590
S 480 g 373G
Persistent Volumes a €
o 240 g 18.6 Gi
Roles ° °
10:30 10:33 10:36 10:40 10:44 10:30 10:33 10:36 10:40 10:44
Storage Classes Time Time
Namespace
default Pods =
Workloads Name S Status $ Restarts Age * CPU (cores) Memory (bytes)
-luigi-4 ‘ i i i =
DAt @& batmantest-luigi-419bbd6b90.. Running 0 2minutes [N 9.535 o022 =G
Deployments Q batmantest-luigi-9fa3531bqpy. Running 0 2 minutes B 9057 - 703652Mi = @
Jobs @ batmantest-luigi-b2e2bSafd7.. Running 0 2minutes [9.371 Al 70:035Mi =}
Pods
@ batmantest-uigi-7dd27ba9ad.. Running 0 2minutes [N o308 I 0s195Mi = G

Replica Sets | i

H20.ai

Founded in 2012, Mountain View, CA Stanford Math & Systems Engineers

It is produced by the company H20.ai (formerly Oxdata)

Open Source Software

Ease of Use via Web Interface or API

Cutting Edge Machine Learning Algorithms

R, Python, Scala, Spark & Hadoop Interfaces Distributed Algorithms Scale to Big Data
Simple deployment without intermediary transformations

In-Memory Parallel Processing

https://qithub.com/h20oai
http://docs.h20.ai
https://www.stat.berkeley.edu/~ledell/docs/h20 hpccon oct2015.pdf

https://github.com/h2oai
http://docs.h2o.ai
https://www.stat.berkeley.edu/~ledell/docs/h2o_hpccon_oct2015.pdf

H20 Community

Companies Using H20.ai FORTUNE H20.ai Users
13,000 169(":500 110,000
THE

@H.0

OF TOP 10 s
BANKS ..

70FTOP 10

INSURANCE COMPANIES

6,427

3,810

T T o o © O >
N N 2
P > X ® 4 ¥ P < o

/\
HEALTHCARE COMPANIES S

H20: Current Algorithm Overview

Statistical Analysis Clustering

* Linear Models (GLM) *+ K-Means

* Cox Proportional Hazards _ _ _

- Naive Bayes Dimension Reduction
Ensembles * Principal Component Analysis

* Generalized Low Rank Models

* Random Forest

. Distributed Trees Solvers & Optimization
* Gradient Boosting Machine
* R Package - Super Learner * Generalized ADMM Solver
Ensembles * L-BFGS (Quasi Newton
Method)
Deep Neural Networks * Ordinary Least-Square Solver

* Stochastic Gradient Descent

* Multi-layer Feed-Forward .
Neural Network Data Munging

* Auto-encoder

* Anomaly Detection

* Deep Features

* Integrated R-Environment
* Slice, Log Transform

H20 Scalability

H20 Deep Learning, CAmoCandel 24

Parallel ScaLabLLLEj

(for &4 epochs on MNIST, with "0.¥3%" parameters)

Training Time
A minutes

78
s0

25
2.7 mins

o}
1 2 4 ¥ 16 32 63 1 2 4 % 16 32 63

H20 Nodes H20 Nodes

(4 cores per node, 1 epoch per hode per MQPReduce)

Thank you

