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Concurrency vs Parallelism

e Concurrency/Multithreading: is when two or more tasks can start, run, and complete in

overlapping time periods. It doesn't necessarily mean they'll ever be running at the same instant. Eg.
multitasking on a single-core machine.

e Parallelism: is when tasks literally run at the same time, eg. on a multicore processor.

https://stackoverflow.com/a/1050257

Quoting Oracle's Multithreaded Programming Guide:

e Concurrency: A condition that exists when at least two threads are making progress. A more
generalized form of parallelism that can include time-slicing as a form of virtual parallelism.
e Parallelism: A condition that arises when at least two threads are executing simultaneously.

Java Concurrency and Multithreading Tutorial:
http://tutorials.jenkov.com/java-concurrency/index.html



https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html
http://tutorials.jenkov.com/java-concurrency/index.html
https://stackoverflow.com/a/1050257

Ideal Parallelism

e An ideal parallel computation can be immediately divided into completely

independent parts

o “Embarrassingly parallel’
o “Naturally parallel”

e No special techniques or algorithms required
input

result

https://www.cs.fsu.edu/~engelen/courses/HPC/Algorithms1.pdf



https://www.cs.fsu.edu/~engelen/courses/HPC/Algorithms1.pdf

Parallelisation Approaches

Model Parallelism: different
machines in the distributed system
are responsible for the computations
in different parts of a single network -

Model Parallelism

for example, each layer in the neural | Machine 4 :

network may be assigned to a L s .
different machine iMammez [ ]55[

Data Parallelism: different machines '““}’-’-’-’-_’-’-’-’--?é‘-"-'ié'-?i. “““““““
have a complete copy of the model; 5Macnme1 i

each machine simply gets a different
portion of the data, and results from
each are somehow combined.

Data Parallelism

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks



http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

Memory Coalescing 1/2

e 2D matrices are represented as
vectors in memory

e Take two square Matrices A and B,
we want to: A.B

e \When Multiplying Matrices, we make
expensive moves in B
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Memory Coalescing 2/2

e Square Matrix Multiplication in Java
e Transpose B
e Move row by row instead of column Matrix Multiplication Comparison
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HPC Usage Example 1:

e Task - Permutation test
o Data: one dataset -> created 10k datasets by randomising the variables (not the outcome)
o Run linear regression with 10 fold cross validation on each dataset to obtain a score (e.g.
RMSE)
e Performance:
o  When done sequentially, using 1 core, 10k datasets took > 83 hours
o  When parallelising the task, using a HPC cluster, 10k datasets took < 83 minutes




HPC Usage Example (The ChemDistiller Project):

. . A Experimental data Chemical database ChembDistiller
e Task - Compute Fingerprints for ~130 Million il'ﬂ?h, .":iom,a. I ——
Chemical Compounds é .L '
e Data: 13k files, each containing 10k compounds C | 71/]
o  Input compound representation: SMILES % | (‘
e Performance: TR [[ = | ==
o Using 1 core, in average, 1 file takes ~ 8 hours, up to 24 o= L%w‘
hours for files with larger molecules == ::_ -
o When done sequentially, using 1 core, the 130M compounds EZ —

would finish in > 11 YEARS (1-2 years using 8 cores) Macine Laariog = F—%mpi J
o When parallelising the task, using a HPC cluster, 130M [ E

| Training spectra
— || Verified annotations

compounds took ~ 22 days

=
NIST 14, HM0B _|

r BT,
— Report || T~
__MassBank | generator

ChembDistiller: an engine for metabolite annotation in mass spectrometry
https://academic.oup.com/bicinformatics/article/34/12/2096/4852828



https://academic.oup.com/bioinformatics/article/34/12/2096/4852828

Cross Validation

e A model is trained using k-1 of
the folds as training data
e The resulting model is

validated on the remaining part

of the data (i.e., itis used as a
test set to compute a
performance measure such as

accuracy).



Random Forest

Random forest algorithm is a supervised classification algorithm. As
the name suggests, this algorithm creates the forest with a number All Data

oftrees subset il subset_

o In general, the more trees in the forest the more robust the

tree tree tree

forest looks like. @ 4
Bootstrapping algorithm with Decision tree (CART) model. /\ /\ ./\
Say, we have n observations in the complete population with m 7\. E 3 7\

variables. am A4 s
Random forest tries to build multiple CART models with different
samples and different initial variables.
o For instance, it will take a random sample of i observations and j randomly chosen initial
variables to build a CART model (j << m).
o It will repeat the process (say) k times and then make a final prediction on each observation.
Final prediction can simply be the mean (or mode) of each prediction.
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Analysing Very Large Files

e Map functions can run in
parallel and pass their results
to Reduce functions

e Results are output in sorted
order by the keys created by
the reduce function

e Sorting very large files?

ap

. map

S0aps

<ep,

=Jap.
<nap.

gL R

900027, 3,
Be08i7.3,

Key, value pairs

-1,
WNT, Y,
W00027.3,
300011, 1
009337,
Wo09il, ),
0001),

— K1, vl

008333,
00033.,
00031, 3,
300053,),
300033 4,
3000334,
0000334,
300003)..4,
300011.4,

> Ki, vl

3900053,4,
00833,4,
20008335,
5900073..),
300033, 3,
39000353,
000354,
20000354,
2000555,
30033.3,
29000353,
39000353,
3900034, 3,

> K2, v4

—> K1,v2

W00 3,

_reduce =

3500911
300011,4,
B0003) ¢,
00334
w00, &
200011 4,
0011
et

nd L

= =T 00154
00055 . 4
25 \ Kh. v reduce e,

’ 390055, 5,
30000353,
00N, 3,

!

—> K1,v3 freduc;

http://selkie.macalester.edu/csinparallel/modules/IntroWMR/build/html/MapReducelntro/MapReducelntr

o0.html


http://selkie.macalester.edu/csinparallel/modules/IntroWMR/build/html/MapReduceIntro/MapReduceIntro.html
http://selkie.macalester.edu/csinparallel/modules/IntroWMR/build/html/MapReduceIntro/MapReduceIntro.html

Initialize the network parameters randomly based on the
model configuration

Distribute a copy of the current parameters to each worker
Train each worker on a subset of the data

Set the global parameters to the average the parameters
from each worker

While there is more data to process, go to step 2

Steps 2 through 4 are demonstrated in the diagram

W represents the parameters (weights, biases) in the neural network
Subscripts are used to index the version of the parameters over time,
and where necessary for each worker machine

Neural Nets Parameter Averaging

i
Parameter Server: W, , =} W, .
=z & Wiy

A A
it W2 Wiia
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Parallelism at Multiple Levels

e Sometimes the problem at hand is parallelizable at more
than one level

e A typical example is when we want to run a parallel
algorithm several times

e An example is to run RandomForest on thousands of
datasets

e \Which level do we choose?



Measuring Scaling Performance

Strong Scaling: Weak Scaling:
e Fixed data size (ex: 10000 datasets) ® Variable data size (ex: 10, 100,
e Change number of parallel 1000, 10000 datasets)
processes e Number of parallel processes
e Check performance changes with data size

e Check performance

Metrics:

e Speedup s(n)= % Scaling Efficiency E(S) = nIT‘ = S(:-)



Summary

Embarrassingly Parallel problems are everywhere

It is @ mindset .. a way of thinking about problem solving

Plenty of platforms

Sometimes it is a matter of mapping the problem into a format that a parallel
platform can process

5. Many real life examples show it is worth the effort!

e



KubeNow

e A cloud agnostic platform for
microservices, based on
Docker and Kubernetes

e Fast Kubernetes operations S

e Helps you in lifting your final . &
application configuring DNS
records and distributed
storage

https://github.com/kubenow/KubeNow



https://github.com/kubenow/KubeNow

Deploy PhenoMeNal with KubeNow (2 PhenoMeNal

Large-Scale Computing for Medical Metabolomics

& KubeNow https://goo.gl/jZx5sn
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Jupyter

0 | ® Not secure | notebook.193.62.55.23.nip.io/edit/MTBLS233 /batman/script.sh#
B career B BioMediA B life Bm EE B Imperial College B8 PhenoMeNal Bm Azure BE Programming B Machinelearnii W Contiki » I

= Jupyter script.sh v 6minutes ago

File

Edit View Language

#1/bin/bash
export PYTHONPATH=./

#numberw=(1 5 10 25 50 100 200 2560 400 500) #for 2 spectra per file
#numberw=(1 5 10 26 25 40 50) #for 20 spectra per file
numberW=(100) #for 10 spectra per file

for number in "${numberw[@]}" ; do

echo "No of Parallel Tasks = $number"

echo $PWD

#utime="$( TIMEFORMAT='%lU'; luigl --module workflow ProcessDatasets --scheduler-host luigi.default --workers $number)"”
#echo Sutime >> times.csv

START=$ (date +%s)

luigi --module batman DoBatman --scheduler-host luigi.default --workers $number
END=$(date +%s)

DIFF=$(( $END - $START ))

END=$(date +%Y-%m-%d-%H-%M-%S)

echo "With $number of workers, jobs ended at $END. It took $DIFF seconds" >> times.csv
#echo $DIFF >> times.csv

#remove the BATMAN running folders to enable next run

cd data

rm -rf $(ls -I "NMRdata*.txt" -I “results*" -D |grep '[©-8]-[0-9]"')

#END=$ (date +%Y-%m-%d-%H-%M-%S)

#mv results results-$number-workers-$END

if [ "$(ls results/*.pdf |wc -1)" == 1000 ]; then rm -rf results; else mv results results-$number-workers-$END; fi

ol ...
#number=$ ((number + 10))
#rm -f data/*.out

wlhin -7 FT€oULLS.CoV
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C 0 ® ligi.193.62.55.23.nip.io/st
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Kubernetes Dashboard

- C )} | ® dashboard.193.62.55.23.nip.io/#!/pod?namespace=default e
! Apps B career B BioMedlA Bm life B8 EE B Imperial College B8 PhenoMeNal B8 Azure B Programming B MachineLearnic W@ Contiki » [m Other bookmark:
kubernetes Q  Search + CREATE
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H20.ai

Founded in 2012, Mountain View, CA Stanford Math & Systems Engineers

It is produced by the company H20.ai (formerly Oxdata)

Open Source Software

Ease of Use via Web Interface or API

Cutting Edge Machine Learning Algorithms

R, Python, Scala, Spark & Hadoop Interfaces Distributed Algorithms Scale to Big Data
Simple deployment without intermediary transformations

In-Memory Parallel Processing

https://qithub.com/h20oai
http://docs.h20.ai
https://www.stat.berkeley.edu/~ledell/docs/h20 hpccon oct2015.pdf



https://github.com/h2oai
http://docs.h2o.ai
https://www.stat.berkeley.edu/~ledell/docs/h2o_hpccon_oct2015.pdf

H20 Community
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H20: Current Algorithm Overview

Statistical Analysis Clustering

* Linear Models (GLM) *+  K-Means

* Cox Proportional Hazards _ _ _

- Naive Bayes Dimension Reduction
Ensembles * Principal Component Analysis

* Generalized Low Rank Models

* Random Forest

. Distributed Trees Solvers & Optimization
* Gradient Boosting Machine
* R Package - Super Learner * Generalized ADMM Solver
Ensembles * L-BFGS (Quasi Newton
Method)
Deep Neural Networks * Ordinary Least-Square Solver

* Stochastic Gradient Descent

*  Multi-layer Feed-Forward .
Neural Network Data Munging

* Auto-encoder

* Anomaly Detection

* Deep Features

* Integrated R-Environment
* Slice, Log Transform



H20 Scalability

H20 Deep Learning, CAmoCandel 24

Parallel ScaLabLLLEj

(for &4 epochs on MNIST, with "0.¥3%" parameters)

Training Time
A minutes

78
s0

25
2.7 mins

o}
1 2 4 ¥ 16 32 63 1 2 4 % 16 32 63

H20 Nodes H20 Nodes

(4 cores per node, 1 epoch per hode per MQPReduce)
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