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Optical Coherence Tomography

Davip Huang, Eric A. Swanson, Cuaries P Lis,

JoeL S. ScHuman, WitLiam G, Stinson, WarreN CHANG,
Micuael R. Heg, THoMAS FLOTTE, KENTON GREGORY,
CarMEN A, PuLiarmmo, James G. Fuinmoro*

A technique called optical coberence tomography (OCT) has been developed for
noninvasive cross-sectional imaging in biological systems. OCT uses low-coherence
interferometry to produce a two-dimensional image of optical scatrering from internal
tissue microstructurcs in 3 way that is analogoes to witrasonic pulse-echo imaging.
OCT has longitudinal and lateral spatial resclutions of a few micrometers and can
detect reflected signals as small as — 107 ' of the incident optical power. Tomographic
imaging is demonstrated in vitro in the peripapillary arca of the retina and in the
coronary artery, two clinically relevant cxampiles that are represeatative of transparent

and turbid media, respectively,

OMOGRAFMIC IMAGING TECH
nigues such as x-ray computed to-
mography (7), magnetic resonance

maging (2), and ultrasound imagang (J

have found widespread apphcanons i med

ianc. Each of these techmgques measures 2

daffcrent physacal property and has a resolo

tboa and penctration range that prove ad-
vantageous for specific appbcations. In tha
report, we discuss OCT. With thas tech-
maque it is possible to perform nonimvasive
cross-sectional imaging of intemal st
tures in ological tissues by measunng ther
optical reflections

Both Jow-coherence light and ultrashort
laser pulses can be used to measure internal
structure in baological systems. An optxcal
signal that 1 transmitted through or reflecy
od from a bwlogical tissue will contan
time-of flight information, which in tum

yiclds spanal informaton about tissuc i

crostructure.  [ime-resohved  transevussaon

spoctroscopy has been used 1o measure ab

SOCPUON and SCATTENNg Propertics in tsucs

and has been demonstrased as 2 nosunvasive

daagnostic measure of hemoglobn oxygen
ation 1n the bean (4). Opacal ranging mea

surcments of macrostracrure have boen per-
formod m the o aad the skin with
femeosccond kucr pulses (5). Time ganing by
means of coberene (6) a5 well as noncoher-
erx (7) sechnagues has been used to pecfer-
ermally devecy directly transenutted hight and
obean transmusson Emages in turbed tasoe
Low-coberence reficcsometry has been used
SO FINENE ECESUICICDS 1N opocal compo-
nenss (8), Sor surtace Contour mappeng 0
megrased crouss (¥), aad for ranging mea-
SurCmenes retma (10) and other ¢ye

In congrast 30 tene doemain techaaques, low
cobcrence reflecsoenesry can be performed with
conmmous-wave Eghe without the noed for
wirashoet pulse bser soarces. Furthermors, re-
ceme sechnolopal advancos | low-coberence
reficcsoencery Bave allowed the construcnion of
compact and moduler sywems that use diode
kghe sowrces and Sber opocs and have adheeved

Fig. 1. Schemun of the OCT saan
ner. The SLD cesper s coupled
w0 3 sngle sode Sher and split
the S50 cx Y » sample and

eucrometer spatial resolutions and high detec
DON sensivines | 1.2)

We have extended the techaique of Jow
coherence reflectometry to tomographic sm
aging in beologcal systems. In Jow-coherence
reflectometry, the coberence property of hght
reflected from a umpk‘ promdes indormanon
on the me-of flight delay from the reflectve
boundancs and backscattenng sites in the
sample. The delay informanon is then used 10
determune the longanudinal location of the
reflection sites. The OCT system performs
multiple longudinal scans at a senes of |-
eral Jocatons 1o provide a two-dimenssonal
map of reflection sites in the sample, Thas
mode of operanon is analogous to ulrasonic
pulse-echo imaging (ultrasound B-mode)

The opoical sectonang capabality of OCT
s akin to that of condocal microscopic sys-
tems (13, 14). However, a!!h«mgh the lon-
gitudinal resodution of confocal microscopy
depends on the available numenical aperture
(15), OCT s resolution is Emated only by the
coherence length of the light source. Thus,
OCT can mamntan high depeh resolution
even when the avalable aperture s small,
Thés feanure will be particularly useful for in
vivo measurement of deep tissues, for exam-
ple, in transpupsllary imaging of the posee-
nor cye and in endoscopic smaging

e OCT scanner (Fig. 1) & an exxension
of peevious low-coherence reflectometer sys-
tems (12). High-speed, continuous-motion
longitadinal scanning s used to increase the
data acquisition raee, and 2 transverse scan-
mng mechanssm makes possible two-dimen
sional imaging. The heart of the system s
the fiber opoc Michclson interferometer,
which is illuminated by low-coberence light
(830 nm wavckngth) from a superiimines-
cent diode (SLD). The ussue sample s
placed in one imerferometer arm, and sam-
ple reflections are combined with the reflec-
ton from the reference mirror. The ampli-
mades and dedavs of tssue reflections are
measured by scanning the reference mirror
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OCT ROLLOUT IN EVERY SPECSAVERS
ANNOUNCED

The multiple will ensure all 740 of its UK practices have an OCT device installed within the next two years
22 May 2017 by Emily McCormick

Category: Multiple, OCT

¥ f inxRs

Specsavers has announced a multi-million pound plan
ta ensure that each of its 740 practices in the UK has

an aptical coherence tomography (OCT) device
installed within the next two years.

The nationwide rollout will begin in June, the multiple
said, confirming that 35 of its practices already have
the machine in store.
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A New Artificial Intelligence “Spring”?
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Digging a Little Bit Deeper...

Classical Statistics Artificial Intelligence

Low dimensional data High dimensional data (e.g., more than 1000
dimensions)

Lots of noise in the data Noise is not sufficient to obscure the structure
in the data if processed right

Not much structure in the data and what A huge amount of structure in the data, but
structure there is can be represented by a the structure is too complicated to be

fairly simple model represented by a single model (e.g., the
mapping of an OCT volume scan to a specific
disease diagnosis)

Main problem is distinguishing true structure Main problem is figuring out how to represent
from noise the complicated structure in a way that allows
it to be learned

Source: adapted from lecture by Professor Geoff Hinton, FRS, to the Royal Society, 2016
YouTube link: https://www.youtube.com/watch?v=VhmE UXDOGs
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Prediction of cardiovascular risk factors from
retinal fundus photographs via deep learning

Ryan Poplin'4, Avinash V. Varadarajan'#, Katy Blumer’, Yun Liu', Michael V. McConnell??,
Greg S. Corrado’, Lily Peng'#* and Dale R. Webster'#

Traditionally, medical discoveries are made by observing associations, making hypotheses from them and then designing and
running experiments to test the hypotheses. However, with medical images, observing and quantifying associations can often
be difficult because of the wide variety of features, patterns, colours, values and shapes that are present in real data. Here, we
show that deep learning can extract new knowledge from retinal fundus images. Using deep-learning models trained on data
from 284,335 patients and validated on two independent datasets of 12,026 and 999 patients, we predicted cardiovascular
risk factors not previously thought to be present or quantifiable in retinal images, such as age (mean absolute error within 3.26
years), gender (area under the receiver operating characteristic curve (AUC) =0.97), smoking status (AUC =0.71), systolic
blood pressure (mean absolute error within 11.23 mmHg) and major adverse cardiac events (AUC —=0.70). We also show that
the trained deep-learning models used anatomical features, such as the optic disc or blood vessels, to generate each prediction.

February 2018
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Automated analysis of retinal imaging using machine

learning techniques for computer vision

Jeffrey De Fauw!, Pearse Keane!, Nenad Tomasev!, Daniel Visentin1,

George van den Driessche!, Mike Johnson', Cian O Hughes', Carlton Chul,
Joseph Ledsam!, Trevor Back', Tunde Peto?, Geraint Rees3, Hugh Montgomery?,
Rosalind Raine#, Olaf Ronneberger!, Julien Cornebise

1Google DeepMind, London, EC4A 3TW, UK

2Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK

JAlexandra House University College London, Bloomsbury Campus. London, WC1N 3AR, UK
“Department of Applied Heath Research, University Cellege London, London, WC1E 7HB, UK
JInstitute of Sport, Exercise and Health, London, W1T 7HA, UK
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Royal National
Institute for the Blind

Fight For Sight UK
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Clinically applicable deep learning for diagnosis
and referral in retinal disease

Jeffrey De Fauw’, Joseph R. Ledsam’, Bernardino Romera-Paredes’, Stanislav Nikolov',
Nenad Tomasev', Sam Blackwell', Harry Askham', Xavier Glorot', Brendan O'Donoghue’,
Daniel Visentin', George van den Driessche’, Balaji Lakshminarayanan', Clemens Meyer’,
Faith Mackinder’, Simon Bouton', Kareem Ayoub’, Reena Chopra™?2, Dominic King', Alan
Karthikesalingam’, Cian O. Hughes '3, Rosalind Raine?, Julian Hughes?, Dawn A. Sim?,
Catherine Egan?, Adnan Tufail’, Hugh Montgomery ¢, Demis Hassabis', Geraint Rees '3,
Trevor Back’, Peng T. Khaw?, Mustafa Suleyman’, Julien Cornebise™?*, Pearse A. Keane ©2*
and Olaf Ronneberger*4*

The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to inter-
pret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases
and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert
clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a
novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans
from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches
or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreaver, we
demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral
accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to
wider dinical use without prohibitive training data requirecments across multiple pathologics in a real-world setting.
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Segmentation Outputs

Manual segmentation Automated segmentation

Vitreous or subhyaloid space
Posterior hyaloid

B Epiretinal membrane

Bl Neurosensory retina
Intraretinal fluid

B Subretinal fluid

B Subretinal hyper reflect. mat.
Retinal pigment epithelium
Drusenoid PED
Serous PED

B Fibrovascular PED
Choroid and outer layers
Padding artefact

B Blink artefact
Foldover artefact
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Referral Categories

Referral
Category

Definition

Urgent

Semi-urgent

Routine

Observation
only

All causes of choroidal neovascularization, including age related macular degeneration,
high myopia, central serous retinopathy, inherited retinal dystrophies (e.g., angioid
streaks), posterior uveitis (e.g., multiple choroiditis), and post traumatic choroidal
rupture.

Referable edema classed as semi-urgent included diabetic maculopathy, retinal vein
occlusion, postoperative (Irvine-Gass syndrome), uveitis, Coat’s disease, radiation and
miscellaneous other cases.

All other non-urgent cases with a large variety, from uncomplicated central serous
retinopathy to more rare conditions such as Macular Telangiectasia (MacTel) type 2.

The absence of pathology classes described above.
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1000 “New’” Patients Moortfields

Errors on referral decision
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Artificial intelligence 'did not miss a
single urgent case’
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‘An absorbing page-turning thriller...
not just a tale of human vs. machine, this is
also a story about one man vs. The Man’
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