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A system becomes a learning system when it can 
continuously and routinely improve itself by 
reflecting on its inputs, processes, and outputs. 

A learning health system harnesses the power of 
data and technology to learn from every patient, 
and feed the knowledge of “what works best” 
back to clinicians and patients to create cycles 
of continuous improvement. 

What are learning health systems? 

Charles P. 
Friedman 

C. Friedman et al., Sci Trans Med 2010 Nov;2(57):57cm29. 



The learning health cycle 

Friedman et al., Yearb Med Inform 2017. 



Example: community-acquired pneumonia 

•  Community-acquired pneumonia (CAP) is a common 
illness affecting >3m people annually in the US 

•  It is the 6th leading cause of death, and responsible for 
>1m hospital admissions per year 
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Abstract 

This paper describes the application of eight statistical and machine-learning methods to 
derive computer models for predicting mortality of hospital patients with pneumonia from 
their finadings at initial presentation. The eight models were each constructed based on 9847 
patient cases and they were each evaluated on 4352 additional cases. The primary evaluation 
metric was the error in predicted survival as a function of the fraction of patients predicted 
to survive. This metric is useful in assessing a model’s potential to assist a clinician in 
deciding whether to treat a given patient in the hospital or at home. We examined the error 
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Supervised	learning	



T-Test 

Elastic Net 

Logistic Regression 

Gradient Boosting 

Deep Learning 

Statistics Machine Learning 

From	a	presentation	by	Tom	Liptrot	



•  Inductive bias (= learning bias): The set of assumptions that a 
learning algorithm uses to construct a model from data 

•  Statistical models typically have a stronger inductive bias than 
machine learning methods, because they require prior 
specification of relevant features  

•  Assumption-free learning does not exist 

•  But we can reduce the impact of inductive bias by using more 
complex models 

•  ... at the expense of increasing variance 

Inductive bias 



The bias-variance tradeoff (1) 



The bias-variance tradeoff (2) 



The bias-variance tradeoff (3) 
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•  Explanatory models are statistical models with high 
bias that are exclusively used for causal explanation 

•  They are used for testing causal hypotheses in 
observational data 

•  Predominant use of data in economics, psychology, 
education, and other social sciences 

•  In data science terms, they have a strong inductive 
bias 

 

 

Explanatory models 

G. Shmueli, Statistical Science 2010;25(3):289-310. 



Example: Unified Theory of Acceptance  
      and Use of Technology (UTAUT) Venkatesh et al./User Acceptance of IT
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significant role as direct determinants of user
acceptance and usage behavior: performance
expectancy, effort expectancy, social influence,
and facilitating conditions.  As will be explained
below, attitude toward using technology, self-
efficacy, and anxiety are theorized not to be direct
determinants of intention.  The labels used for the
constructs describe the essence of the construct
and are meant to be independent of any particular
theoretical perspective.  In the remainder of this
section, we define each of the determinants,
specify the role of key moderators (gender, age,
voluntariness, and experience), and provide the
theoretical justification for the hypotheses.
Figure 3 presents the research model.

Performance Expectancy

Performance expectancy is defined as the degree
to which an individual believes that using the sys-
tem will help him or her to attain gains in job

performance.  The five constructs from the dif-
ferent models that pertain to performance
expectancy are perceived usefulness (TAM/TAM2
and C-TAM-TPB), extrinsic motivation (MM), job-fit
(MPCU), relative advantage (IDT), and outcome
expectations (SCT).  Even as these constructs
evolved in the literature, some authors acknowl-
edged their similarities:  usefulness and extrinsic
motivation (Davis et al. 1989, 1992), usefulness
and job-fit (Thompson et al. 1991), usefulness and
relative advantage (Davis et al. 1989; Moore and
Benbasat 1991; Plouffe et al. 2001), usefulness
and outcome expectations (Compeau and Higgins
1995b; Davis et al. 1989), and job-fit and outcome
expectations (Compeau and Higgins 1995b).

The performance expectancy construct within
each individual model (Table 9) is the strongest
predictor of intention and remains significant at all
points of measurement in both voluntary and man-
datory settings (Tables 5, 6, and 7), consistent
with previous model tests (Agarwal and Prasad

V. Venkatesh et al., MIS Quarterly 2003; 27(3):425-78. 

Venkatesh et al./User Acceptance of IT
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Table 14.  Measurement Model Estimation for the Preliminary Test of UTAUT

(a) T1 Results (N = 215)

ICR Mean S Dev PE EE ATUT SI FC SE ANX BI
PE .92 5.12 1.13 .94
EE .91 4.56 1.40 .31*** .91
ATUT .84 4.82 1.16 .29*** .21** .86
SI .88 4.40 1.04 .30*** -.16* .21** .88
FC .87 4.17 1.02 .18* .31*** .17* .21** .89
SE .89 5.01 1.08 .14 .33*** .16* .18** .33*** .87
ANX .83 3.11 1.14 -.10 -.38*** -.40*** -.20** -.18** -.36*** .84
BI .92 4.07 1.44 .38*** .34*** .25*** .35*** .19** .16* -.23** .84
(b) T2 Results (N = 215)

ICR Mean S Dev PE EE ATUT SI FC SE ANX BI
PE .91 4.71 1.11 .92
EE .90 5.72 0.77 .30*** .90
ATUT .77 5.01 1.42 .25** .20** .86
SI .94 3.88 1.08 .27*** -.19* .21** .88
FC .83 3.79 1.17 .19* .31*** .18* .20** .86
SE .89 5.07 1.14 .24** .35*** .19** .21** .33*** .75
ANX .79 3.07 1.45 -.07 -.32*** -.35*** -.21** -.17* -.35*** .82
BI .90 4.19 0.98 .41*** .27*** .23** .21** .16* .16* -.17* .87
(c) T3 Results (N = 215)

ICR Mean S Dev PE EE ATUT SI FC SE ANX BI
PE .91 4.88 1.17 .94
EE .94 5.88 0.62 .34*** .91
ATUT .81 5.17 1.08 .21** .24** .79
SI .92 3.86 1.60 .27*** -.15 .20** .93
FC .85 3.50 1.12 .19* .28*** .18* .22** .84
SE .90 5.19 1.07 .14* .30*** .22** .20** .33*** .77
ANX .82 2.99 1.03 -.11 -.30*** -.30*** -.20** -.24** -.32*** .82
BI .90 4.24 1.07 .44*** .24** .20** .16* .16* .16* -.14 .89

Notes: 1. ICR: Internal consistency reliability.
2. Diagonal elements are the square root of the shared variance between the constructs and

their measures; off-diagonal elements are correlations between constructs.
3. PE: Performance expectancy; EE: Effort expectancy; ATUT: Attitude toward using

technology; SI: Social influence; FC: Facilitating conditions; SE: Self-efficacy; ANX: Anxiety;
BI: Behavioral intention to use the system.



Is it a problem if the UTAUT model is wrong? 

Question 

Venkatesh et al./User Acceptance of IT
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Performance Expectancy

Performance expectancy is defined as the degree
to which an individual believes that using the sys-
tem will help him or her to attain gains in job

performance.  The five constructs from the dif-
ferent models that pertain to performance
expectancy are perceived usefulness (TAM/TAM2
and C-TAM-TPB), extrinsic motivation (MM), job-fit
(MPCU), relative advantage (IDT), and outcome
expectations (SCT).  Even as these constructs
evolved in the literature, some authors acknowl-
edged their similarities:  usefulness and extrinsic
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The big target here isn't advertising, though. 
It's science. The scientific method is built 
around testable hypotheses. [...] Scientists are 
trained to recognize that correlation is not 
causation, that no conclusions should be 
drawn simply on the basis of correlation 
between X and Y (it could just be a 
coincidence). [...] But faced with massive data, 
this approach to science — hypothesize, 
model, test — is becoming obsolete. 
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Example revisited: hospital admissions 

•  Resources are too scarce to give preventive 
interventions to every patient 

•  Prediction models can help to deploy these 
resources in patients with the highest risks 



Example revisited: pneumonia 

•  Community-acquired pneumonia (CAP) is a common 
illness affecting >3m people annually in the US 

•  It is the 6th leading cause of death, and responsible for 
>1m hospital admissions per year 

•  If we can predict which CAP patients are at high risk of 
death, we can use these models to decide if a patient 
needs to be admitted to hospital 



Is it a problem if the risk prediction model is wrong? 

 

Is it important that we can interpret such a model  
or understand its predictions? 

Question 
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Z. Lipton, ACM Magazine 
Queue - Machine Learning 
2018;16(3).  
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machine learning

Supervised machine-learning models boast 
remarkable predictive capabilities. But can you 
trust your model? Will it work in deployment? 
What else can it tell you about the world? 
Models should be not only good, but also 

interpretable, yet the task of interpretation appears 
underspecified. The academic literature has provided 
diverse and sometimes non-overlapping motivations for 
interpretability and has offered myriad techniques for 
rendering interpretable models. Despite this ambiguity, 
many authors proclaim their models to be interpretable 
axiomatically, absent further argument. Problematically, 
it is not clear what common properties unite these 
techniques.

This article seeks to refine the discourse on 
interpretability. First it examines the objectives of previous 

In machine learning, the 
concept of interpretability is 
both important and slippery.

ZACHARY C. LIPTON 

1 OF 27 TEXT  
ONLY 

MythosThe

of Model 
Interpretability 



•  The notion of interpretability is ill-defined, and has no 
formal meaning 

•  Claims regarding interpretability often exhibit a quasi-
scientific character 

•  It is useful to make a distinction between: 

–  model transparency 

–  post-hoc interpretability of predictions 

Model interpretability: What? 

Z. Lipton, ACM Magazine Queue - Machine Learning 2018;16(3).  



•  The formal objectives of supervised learning (test set 
performance) do not capture interpretability 

•  The demand for interpretability arises from additional 
objectives related to real-world deployment 

Model interpretability: Why? 

The Mythos of Model Interpretability

perfect matches for the real-life tasks they are meant to
solve. This can happen when simplified optimization ob-
jectives fail to capture our more complex real-life goals.
Consider medical research with longitudinal data. Our real
goal may be to discover potentially causal associations, as
with smoking and cancer (Wang et al., 1999). But the opti-
mization objective for most supervised learning models is
simply to minimize error, a feat that might be achieved in a
purely correlative fashion.

Another such divergence of real-life and machine learning
problem formulations emerges when the off-line training
data for a supervised learner is not perfectly representative
of the likely deployment environment. For example, the
environment is typically not stationary. This is the case for
product recommendation, as new products are introduced
and preferences for some items shift daily. In more ex-
treme cases, actions influenced by a model may alter the
environment, invalidating future predictions.

Discussions of interpretability sometimes suggest that hu-
man decision-makers are themselves interpretable because
they can explain their actions (Ridgeway et al., 1998). But
precisely what notion of interpretability do these expla-
nations satisfy? They seem unlikely to clarify the mech-
anisms or the precise algorithms by which brains work.
Nevertheless, the information conferred by an interpreta-
tion may be useful. Thus, one purpose of interpretations
may be to convey useful information of any kind.

After addressing the desiderata of interpretability, we con-
sider what properties of models might render them in-
terpretable (expanded in §3). Some papers equate in-
terpretability with understandability or intelligibility (Lou
et al., 2013), i.e., that we can grasp how the models

work. In these papers, understandable models are some-
times called transparent, while incomprehensible models
are called black boxes. But what constitutes transparency?
We might look to the algorithm itself. Will it converge?
Does it produce a unique solution? Or we might look to its
parameters: do we understand what each represents? Al-
ternatively, we could consider the model’s complexity. Is it
simple enough to be examined all at once by a human?

Other papers investigate so-called post-hoc interpretations.
These interpretations might explain predictions without
elucidating the mechanisms by which models work. Ex-
amples of post-hoc interpretations include the verbal ex-
planations produced by people or the saliency maps used
to analyze deep neural networks. Thus, humans decisions
might admit post-hoc interpretability despite the black box

nature of human brains, revealing a contradiction between
two popular notions of interpretability.

2. Desiderata of Interpretability Research
At present, interpretability has no formal technical mean-
ing. One aim of this paper is to propose more specific def-
initions. Before we can determine which meanings might
be appropriate, we must ask what the real-world objectives
of interpretability research are. In this section we spell out
the various desiderata of interpretability research through
the lens of the literature.

While these desiderata are diverse, it might be instructive
to first consider a common thread that persists throughout
the literature: The demand for interpretability arises when
there is a mismatch between the formal objectives of super-
vised learning (test set predictive performance) and the real
world costs in a deployment setting.

Evaluation 
Metric

Interpretation

Figure 1. Typically, evaluation metrics require only predictions
and ground truth labels. When stakeholders additionally demand
interpretability, we might infer the existence of desiderata that
cannot be captured in this fashion.

Consider that most common evaluation metrics for su-
pervised learning require only predictions, together with
ground truth, to produce a score. These metrics can be
be assessed for every supervised learning model. So the
very desire for an interpretation suggests that in some sce-
narios, predictions alone and metrics calculated on these
predictions do not suffice to characterize the model (Figure
1). We should then ask, what are these other desiderata and
under what circumstances are they sought?

However inconveniently, it turns out that many situations
arise when our real world objectives are difficult to en-
code as simple real-valued functions. For example, an al-
gorithm for making hiring decisions should simultaneously
optimize productivity, ethics, and legality. But typically,
ethics and legality cannot be directly optimized. The prob-
lem can also arise when the dynamics of the deployment
environment differ from the training environment. In all
cases, interpretations serve those objectives that we deem
important but struggle to model formally.

Z. Lipton, ACM Magazine Queue - Machine Learning 2018;16(3).  



•  Trust 

•  Causality 

•  Transferability 

•  Informativeness 

•  Fair and ethical decision making 

Model interpretability: Why? 

Z. Lipton, ACM Magazine Queue - Machine Learning 2018;16(3).  
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These corollaries offer a somewhat finer depiction of what
informatics is and is not, and what informaticians do.
Corollary 1: Informatics is more about people than tech-
nology. This corollary can be seen from the “person” ap-
pearing twice in the theorem, while the information resource
appears only once. This first corollary reminds us that infor-
mation resources must ultimately be built for the benefit of
people. This corollary also shows what informatics is not. As
illustrated in Fig 2, creating resources that function as “oracles”
and may be seen as competing with people—resources that
seek, on their own, to be better than the person unassisted—is
not a pursuit of interest in informatics.
Corollary 2: In order for the theorem to hold, the resource
must offer something that the person does not already
know. This corollary helps explain why the development of
effective information resources is often so challenging. What
the resource offers to the person must not only be correct, it
must also be informative. It must increment his/her knowl-
edge in some significant way. Because the persons who
interact with these resources typically bring to any task a
high level of personal knowledge about the domain in which
they are working, the requirement that the resource be
informative sets a very high bar for the theorem to be
satisfied.

Corollary 3: Whether the theorem holds depends on an
interaction between person and resource, the results of
which cannot be predicted in advance. This final corollary
reminds us that what we know about the person alone, and
what we know about the resource alone, cannot tell us what
will happen when the resource is deployed. The theorem
can fail to hold, even though the resource has potential to be
helpful, if it is used by the person in ways that do not enable
the realization of its potential. This can happen because the
resource is poorly designed and thus hard to use well, or
because the person does not know enough about the domain
to make best use of the resource.
By way of conclusion, the theorem and its three corollaries
seek to establish the timbre of informatics rather than its
libretto. I hope this formulation will promote understanding
through simplicity, by stimulating imagination and further
discussion. Sometimes less is more, and a picture is invari-
ably worth a thousand words.
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Clinical Decision Support
in the Era of Artificial Intelligence

Clinicians and researchers have long envisioned the
day when computers could assist with difficult deci-
sions in complex clinical situations. The first article on
this subject appeared in the scientific literature about
60 years ago,1 and the notion of computer-based
clinical decision support has subsequently been a
dominant topic for informatics research. Two recent
Viewpoints in JAMA highlighted the promise of deep
learning in medicine.2,3 Such new data analytic meth-
ods have much to offer in interpreting large and com-
plex data sets. This Viewpoint is focused on the sub-
set of decision support systems that are designed
to be used interactively by clinicians as they seek to
reach decisions, regardless of the underlying analytic
methodology that they incorporate.

With the evolution of digital and communication
technologies plus innovative software methods, the
ability to offer high-quality support to clinicians has
resulted in impressive new capabilities and several
commercial products. For example, many decision sup-
port tools are built into medical devices, creating new
ways to visualize or interpret data that are provided

to expert users. Artificial intelligence programs, which
are increasingly based on a variety of machine learning
and natural language processing methods, are espe-
cially prominent in these data interpretation and text
mining settings.

Why, then, do clinical decision support systems
(CDSSs) designed for direct interactive use by clini-
cians have challenges of credibility and adoption
when the literature has been replete for 4 decades
with studies that present computing systems demon-
strating diagnostic accuracy that rivals the perfor-
mance of expert clinicians?4,5 The reasons are varied
and reflect the realities and complexities of clinical
practice. Biomedical informaticians have long under-
stood those reasons, recognizing the spectrum of
capabilities and characteristics that must be incorpo-
rated into a CDSS if it is to be accepted and integrated
into routine workflow:
• Black boxes are unacceptable: A CDSS requires trans-

parency so that users can understand the basis for any
advice or recommendations that are offered.

• Time is a scarce resource: A CDSS should be efficient
in terms of time requirements and must blend into the
workflow of the busy clinical environment.

• Complexity and lack of usability thwart use: A CDSS
should be intuitive and simple to learn and use so that
major training is not required and it is easy to obtain
advice or analytic results.

• Relevance and insight are essential: A CDSS should re-
flect an understanding of the pertinent domain and the
kinds of questions with which clinicians are likely to
want assistance.

• Delivery of knowledge and information must be re-
spectful: A CDSS should offer advice in a way that
recognizes the expertise of the user, making it clear
that it is designed to inform and assist but not to re-
place a clinician.

• Scientific foundation must be strong: A CDSS should
have rigorous, peer-reviewed scientific evidence es-
tablishing its safety, validity, reproducibility, usability,
and reliability.

Health care is a particularly challenging domain for
decision support. A CDSS requires strong analytical

capabilities that can function effectively
in a domain where the understanding of
causal mechanisms and relationships
is still incomplete and where uncer-
tainty, and an approach to managing it,
is accordingly inevitable. A CDSS must
provide valid support while simultane-
ously addressing the list of demanding
requirements to help ensure a system’s
adoption by clinicians. For example,

effective decision support capabilities are often those
that avoid additional data entry tasks, such as a CDSS
that acquires the bulk of the data needed for analyzing
a case through integration with an electronic health
record (EHR). Today’s EHRs have not made this easy
because they generally lack the cross-platform trans-
parency and standards that would be needed for a
single CDSS to be tightly integrated with multiple EHR
products or implementations.

Different decision-making tasks often pose differ-
ent challenges for a CDSS. For example, a system de-
signed to assist with clinical diagnosis is very different
from one that is intended to assist with therapy plan-
ning. A CDSS for diagnosis can generally be built on link-
ages between clinical data and gold standards for accu-
racy (eg, biopsies, autopsies, biomolecular markers, or
surgical findings). But in formulating a therapeutic plan,
especially in complex settings, there is often no gold stan-
dard, and there may be disagreement, even among ex-
perts. For example, an early study evaluated a program
designed to assist with the selection of antibiotic therapy

Despite the enthusiasm for exploring
the potential of artificial intelligence
and decision support in clinical
settings, several complexities limit the
ability to move ahead quickly.
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“Black boxes are unacceptable:  
A CDSS requires transparency so that 
users can understand the basis for 
any advice or recommendations 
that are offered.” 
 
“A CDSS should offer advice in a 
way that recognizes the expertise of 
the user, making it clear that it is 
designed to inform and assist but not 
to replace a clinician.” 



Example: community-acquired pneumonia 

•  Community-acquired pneumonia (CAP) is a common 
illness affecting >3m people annually in the US 

•  It is the 6th leading cause of death, and responsible for 
>1m hospital admissions per year 

•  If we can predict which CAP patients are at high risk of 
death, we can use these models to decide if a patient 
needs to be admitted to hospital 
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Abstract 

This paper describes the application of eight statistical and machine-learning methods to 
derive computer models for predicting mortality of hospital patients with pneumonia from 
their finadings at initial presentation. The eight models were each constructed based on 9847 
patient cases and they were each evaluated on 4352 additional cases. The primary evaluation 
metric was the error in predicted survival as a function of the fraction of patients predicted 
to survive. This metric is useful in assessing a model’s potential to assist a clinician in 
deciding whether to treat a given patient in the hospital or at home. We examined the error 
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•  The most accurate model was a neural network 
which outperformed other methods (e.g. logistic 
regression) by a wide margin 

•  One of the methods was a rule-based method that 
found the rule:  HasAsthama(x) => LowerRisk(x) 

•  The authors chose the deploy the rule-based model, 
and left out this rule 

•  Several authors have since argued that prediction 
models must be intelligible and editable 

What Cooper et al. found 

G. Cooper at al., Artificial Intelligence in Medicine 1997;3:107-38. 



Why did the rule-based method infer that asthma 
patients were at low risk? 

Question 



Opening the black box 

These corollaries offer a somewhat finer depiction of what
informatics is and is not, and what informaticians do.
Corollary 1: Informatics is more about people than tech-
nology. This corollary can be seen from the “person” ap-
pearing twice in the theorem, while the information resource
appears only once. This first corollary reminds us that infor-
mation resources must ultimately be built for the benefit of
people. This corollary also shows what informatics is not. As
illustrated in Fig 2, creating resources that function as “oracles”
and may be seen as competing with people—resources that
seek, on their own, to be better than the person unassisted—is
not a pursuit of interest in informatics.
Corollary 2: In order for the theorem to hold, the resource
must offer something that the person does not already
know. This corollary helps explain why the development of
effective information resources is often so challenging. What
the resource offers to the person must not only be correct, it
must also be informative. It must increment his/her knowl-
edge in some significant way. Because the persons who
interact with these resources typically bring to any task a
high level of personal knowledge about the domain in which
they are working, the requirement that the resource be
informative sets a very high bar for the theorem to be
satisfied.

Corollary 3: Whether the theorem holds depends on an
interaction between person and resource, the results of
which cannot be predicted in advance. This final corollary
reminds us that what we know about the person alone, and
what we know about the resource alone, cannot tell us what
will happen when the resource is deployed. The theorem
can fail to hold, even though the resource has potential to be
helpful, if it is used by the person in ways that do not enable
the realization of its potential. This can happen because the
resource is poorly designed and thus hard to use well, or
because the person does not know enough about the domain
to make best use of the resource.
By way of conclusion, the theorem and its three corollaries
seek to establish the timbre of informatics rather than its
libretto. I hope this formulation will promote understanding
through simplicity, by stimulating imagination and further
discussion. Sometimes less is more, and a picture is invari-
ably worth a thousand words.
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•  If managed in the same way, asthma patients with 
CAP would be at a higher risk than other patients 

•  In our current care system, this risk is recognised and 
therefore asthma patients are managed differently 

•  Their net risk is therefore lower 
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•  A “Citizens Jury” is a public engagement process that allows 
policy makers to hear thoughtful input from an informed 
microcosm of the public  

•  In Feb/Mar 2019 we will organise 2 Citizens Juries (5 days each) 
on explainable AI 

•  The juries will explore the trade-offs between performance and 
explainability of computer algorithms 

•  Scenarios in clinical medicine, 
criminal justice, and professional 
recruitment will be considered 

Citizens Juries 



1.  Context: learning health systems 

2.  Basics of supervised learning 

3.  Explanatory vs prediction models 

4.  Interpretability of prediction models 

5.  Conclusions 

Menu 



Ø  All models are wrong, but some are useful 

Ø  Prediction models are a radically pragmatic,  
“end-of-theory” use of data to engineer systems 

Ø  Their core purpose is to make predictions for future, 
unseen instances – not to increase our understanding 

Ø  But at the interface with humans, the need arises to 
provide interpretability 

Conclusions (1) 



Ø  Model interpretability is still a poorly defined notion 

Ø  It is ultimately something that should be studied by 
psychologists, not computer scientists 

Ø  To understand a model, we must understand its 
relationship with the real world 

Conclusions (2) 
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