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Empirical Software Engineering

Software Engineering strives to be like any other engineering
discipline

Goals of (software) production

high quality product

within budget constraints

by a specified deadline

These goals have been achieved in other production processes
by using scientific principles

hypothesis setting (based on observation)

hypothesis verification (based on empirical studies)
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Why Empirical Studies in Software Engineering?

So far, software development improvement has been carried out
on a mostly ideological basis, e.g.,

goto’s considered harmful (is that true? harmful for what?
to what extent?)

object-based approaches: modules should have

high internal cohesion (whatever that means)

low external coupling (whatever that means)
object-oriented approaches

multiple inheritance (how many levels? how “multiple?”)

single inheritance (how many levels?)

(no inheritance?)

They can be useful for setting hypotheses

not as unproven assumptions
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Because . . .

Software Engineering needs empirical investigations to

substantiate claims—like in any scientific discipline

enable continuous, quantifiable improvement—like in any
engineering discipline

Software Engineering is a human-intensive business

rigor and precision are indispensable, even more than in
other disciplines . . .

. . . but common sense should always rule
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Don’t Use “Opaque” Resources

Gurus

you do not know how well-grounded their knowledge is

Proprietary methods

you do not know what is behind the scenes
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Aim of the Game of Using Quantitative
Approaches in Software Engineering

Quantitative approaches can help

plan

predict

monitor

control

evaluate

products and processes, to

choose products and processes

improve products and processes

Final goals

cost reduction

meeting deadlines

product quality improvement
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Do Start with Goals

Corporate goals

industrial goals: e.g., reduce maintenance costs by X

research goals: e.g., study the effect of size on effort

Tactical goals

industrial goals: e.g., improve the software design phase

research goals: e.g., predict development effort based on
size in company Y

Measurement goals

Goals may somewhat change along the way
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Do Have an Organized Measurement Process

Planning and quantitative analysis of the software development
process

6 iteration steps: experience is adapted and reused at each
iteration

Sandro Morasca Making Sense out of Software Engineering Data 8/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Do Have an Organized Process

You are going to spend time and effort in the empirical study

Check

resources

availability

timeliness

costs

. . .
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Measurement Goals

Characterizing, evaluating, estimating, predicting

effort of a project

time of a project

number of faults in a software component/product

probability of having at least one fault in a software
component/product

time to next failure

impact of introducing a new technique

. . .

How? When? Where? Who? (Why?)
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Do Have a (GQM) Goal Template

Object of Study: entity or the set of entities to study

e.g., a software specification, or a testing process

Purpose: reason/type of result that should be obtained

e.g., characterization, evaluation, prediction, improvement

Quality Focus: attribute or set of attributes to study

e.g., size (for the software specification), or effectiveness
(for the testing process)

Point of View: person or organization for whose benefit
measurement is carried out

e.g., the designers (for the software specification), or the
testers (for the testing process)

Environment: the context (e.g., the specific project or
environment) in which measurement is carried out
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Do Say What You Mean and Mean What You Say

Object of study: high-level design of software systems

Purpose: prediction

Quality focus: maintainability

Viewpoint: project leader and development team

Environment: agile development at site X of company Y

The dimensions of a GQM goal are not just words

they are the specification of your entire study

each of them influences what you will do
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Characterization and Statistics

A distribution, descriptive statistics

n min max med m σ
Effort 81 546 23940 3647 5046.31 4419.77
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Evaluation and Statistics

A distribution, descriptive statistics, an evaluation criterion

below 6000: good
above 6000: bad
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Prediction and Statistics

A statistical association
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Improvement and Statistics

A causal statistical association
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Do Make Empirical Hypotheses Explicit

Prediction and improvement purposes require empirical
hypotheses, e.g.,

the higher the size, the higher the effort

the higher the size, the higher the fault-proneness

the higher the class cohesion, the higher the class
maintainability

the higher the class coupling, the lower the class
maintainability

Now, how do we measure

effort? cohesion? coupling?

fault-proneness? maintainability?
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First Question

Are we measuring the right attribute?

(usefulness)

Many attributes (qualities) are used to speak about software
artifacts

size

complexity

cohesion, coupling, connectivity

functionality

maintainability, reliability, usability . . .

Many techniques are defined to improve software with respect
to software attributes, e.g.,

decrease coupling/increase cohesion to increase
maintainability
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Second Question

Are we measuring the attribute right?

(construct validity)

Thousands of measures have been defined for software
attributes

However, we need a clear idea of what measures for an
attribute should look like when defining a measure for that
software attribute

Acceptance of a measure should not be based on a matter of
belief, a leap of faith
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Internal Software Attributes

Those attributes of a software artifact

that can be measured based only on the knowledge of the
artifact

Examples: size, structural complexity, coupling, cohesion
Conventional wisdom has it that they are

easy to measure

formally characterized

Measurement Theory, Axiomatic Approaches

almost useless per se: they need to be linked to some

external software attribute, or
process attribute
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External Software Attributes

Those attributes of an artifact

that cannot be measured based only on the knowledge of
the artifact

They can be measured based on the knowledge of

the artifact

its “environment”

the interactions between the artifact and the environment

Examples: reliability, usability, maintainability, portability
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External Software Attributes

Conventional wisdom has it that they are

hard to measure

not formally characterized

useful per se
relevant for some kind of “user” of the artifact

end users, developers, computers
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Measure

A measure m for an attribute associates a value with each
entity

m : E → V

where

E: set of entities

V: set of values

Depending on the measure, the set of values may be

numeric (continuous or discrete) or

non-numeric
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Don’t: Never Mind the Measures—What about the
Numbers!

Do not use a measure just because it is there

it could be a waste of time and effort

it could be misleading

Do not use a measure just because everybody is using it

we need to get rid of old, ineffective measures

A measure is just a function

a number-producing machine
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Do Theoretically Validate the Measures

Make sure your measures make sense before using them

Measurement Theory

general framework

Axiomatic Approaches

Weyuker’s

Complexity

Briand, Morasca, and Basili’s

Size
Structural Complexity
Cohesion
Coupling
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Scale

Technically, a scale is a triple

an Empirical Relational System

a Numerical Relational System

a measure that satisfies the Representation Condition

In other words

a scale is a measure that makes sense

e.g., Size(A) > Size(B) if and only if A is intuitively longer
than B

Sandro Morasca Making Sense out of Software Engineering Data 26/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Don’t Engage in Nitpicking

Is Lines Of Code (LOC) a scale?

Fragment A:

i++; j++; h++;

Fragment B:

i++;

j++;

Representation Condition

A LONGER THAN B ⇔ LOC (A) > LOC (B)

FALSE!
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Don’t: If It Is not Size, It Must Be Complexity

Do not use

blanket terms

different terms for the same concepts

Complexity has often been used as an umbrella term for

coupling

lack of cohesion

connectivity

information

size
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Don’t Unsuccessfully Validate Your Measures

Weyuker’s axioms were defined for

software bodies, the executable parts of software programs

with concatenation as the only possible operation

for software complexity

Why validate a class coupling measure with Weyuker’s axioms?

Take Briand, Morasca, and Basili’s coupling axioms

Suppose that the class coupling measure satisfies all of them,
except one

Why say that the class coupling measure was validated with
Briand, Morasca, and Basili’s coupling axioms?
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Don’t Try to Impress

Do not introduce esoteric attributes

they may be second-order ones

size is typically the most important attribute

they may already exist under different names

Do not introduce complicated measures for (esoteric) attributes

they could be very difficult to collect

they may be highly correlated with existing, easier to
quantify measures

they may be ineffective
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Don’t Discard Subjective Scales

Objective scale

Lines of Code

Subjective scale

an instructor’s grading of programs

Conventional wisdom: “objective scales are always better than
subjective scales”

Well . . .

subjective scales may provide important information

assessment is always subjective

decisions are always subjective
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(Don’t) Use Surrogate Measures

Sometimes, we do not really have the measure we want, so we
come up with a surrogate measure

number of faults instead of cost required to fix them

LOC instead of maintainability cost

LOC instead of maintainability itself

estimate of the number of faults instead of the number of
faults

LOC instead of FP

Buyer beware!

Sandro Morasca Making Sense out of Software Engineering Data 32/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Do Use Models as External Measures

According to Measurement Theory, the right way of quantifying
an external attribute is to use a probability model

Think reliability: probability of

conditioned event: occurrence of no failures until time t

conditioning event: a given software, a given way of using
it

Think maintainability: probability of

conditioned event: maintenance completed by time t

conditioning event: a given software, a given way of
maintaining it, a given maintenance requirement

There may be different models (i.e., measures) for the same
external attribute-like with internal attributes
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Don’t Use Other Measures instead of Models

Reliability is not the average time between failures

that is derived from the reliability model

Maintainability is not the cost of maintaining a program

Sandro Morasca Making Sense out of Software Engineering Data 34/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

GQM Goal: Effort

Object of study: software modules
Purpose: prediction
Quality focus: effort
Viewpoint: project leader and development team
Environment: development site X of company Y

We use the desharnais1 1 1 dataset from the PROMISE
repository
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GQM Goal: Fault-proneness

Object of study: software modules
Purpose: prediction
Quality focus: fault-proneness
Viewpoint: project leader and development team
Environment: development site X of company Y

We use the mc2 dataset from the PROMISE repository
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Data Analysis

When life gives you lemons, make lemonade

you may not get all the data you would like

you may not get all the quality data you would like

Do not strive for perfection

It may be too expensive to get the quality data you would
like
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Do Take a Look at the Data

Before doing any analysis, take a look at the data to see what
they look like
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R: Get the Data

#Upload a dataset

desharnais <-

read.csv(file="j:\\RData\\desharnaisnew.txt",

head=FALSE,sep=",")

#Look at the dataset

desharnais

#Select the effort column

desharnais[6]

#Show the histogram of the effort column: Error!

hist(desharnais[6])

#Extract a column vector from the data frame

desharnais[[6]]

#Assign the column vector to a variable

effort <- desharnais[[6]]
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Simple Histogram
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R: Histograms

#Show histograms of effort with different numbers of

bars

hist(effort)

hist(effort, breaks = 10)

hist(effort, breaks = 20)
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R: Operations on Vectors

#Show one element of the vector

effort[3]

#Show a segment of the vector

effort[3:5]

#Show specific elements of the vector: Error!

effort[3,5,7]

#Build a sequence of values

projects <- c(3,5,7)

#Use the sequence of values as indices to select

specific elements of the vector

effort[projects]
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R: Operations on Vectors

#Sum

totalEffort <- sum(effort)

totalEffort

#Mean

meanEffort <- mean(effort)

meanEffort

#Product by a scalar

monthlyCostA <- 1000

costA <- monthlyCostA*effort

costA

monthlyCostB <- 200

costB <- monthlyCostB*effort

costB
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R: Operations on Vectors

#Vector difference

difference <- costA - costB

difference

#Concatenation of vectors

small <- effort[1:6]

small

vec <- c(small, 4444)

vec

smaller <- effort[11:13]

vec <- c(small, smaller)

vec
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R: Operations on Vectors

#Removal of elements

newvec <- vec[-3]

newvec

#Removal of elements

newvec <- vec[-c(1,3,4)]

newvec

#Select a matrix

mat <- desharnais[3:5]

mat

#Selections within the matrix

mat[80,3]

mat[80,]

mat[,3]
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R: Operations on Vectors

#Logical operations on vectors

effort > meanEffort

effort[effort > meanEffort]

effort[effort > meanEffort | effort < 1000]
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R: Array

#Build an array

dummyLanguage <- array( 1, dim = 46 )

dummyLanguage

otherDummyLanguage <- array(2, dim = 25)

otherDummyLanguage

#Concatenate

dummyLanguage <- c(dummyLanguage, otherDummyLanguage)

dummyLanguage

dummyLanguage <- c(dummyLanguage, array( 3, dim = 10 ))

dummyLanguage

dummyLanguage <- c(dummyLanguage, array( 4, dim = 19 ))

dummyLanguage
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R: Matrix

#Build a matrix

mat <- matrix(nrow = 2, ncol = 2)

mat[1,1] <- 231

mat[1,2] <- 20

mat[2,1] <- 85

mat[2,2] <- 16

mat

mat[1]

mat[2]

mat[3]

mat[4]
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Pie Chart
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R: Basic Plots

#Select the language column

language <- desharnais[[12]]

#Use pie chart. Something is not quite right ...

pie(language)

#Summarize variable

frequencies <- table(language)

frequencies

#Extract the names of the rows of a table

row.names(frequencies)

#Pie chart with basic labels

pie(frequencies)
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R: Some String Manipulation

#String manipulation

firstName <- "Sandro"

familyName <- "Morasca"

completeName <- paste(firstName, familyName, sep = " ")

completeName
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R: Basic Plots

#Pie chart with labels

lbls <- paste(row.names(frequencies), frequencies, sep

= ": ")

pie(frequencies, labels = lbls)

#Change names of rows

newNames <- c("Java", "FORTRAN", "C")

row.names(frequencies) <- newNames

frequencies

#Pie chart with right labels

lbls <- paste(row.names(frequencies), frequencies, sep

= ": ")

pie(frequencies, labels = lbls)
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Single Boxplot
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Do Provide Descriptive Statistics and Values

Check and provide descriptive statistics for at least

cardinality of the data set

indicator of central tendency

indicator of dispersion

n min max med m σ
Effort 81 546 23940 3647 5046.31 4419.77

The ones to use will depend on the specific type of scale

Figures often provide only an intuitive idea of the results

add a table to provide the actual values

explain them in the text
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Multiple Boxplots
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R: Basic Plots

#Single boxplot

boxplot(effort)

#Multiple boxplot

boxplot(V6~V12,desharnais)

#Alternatively

boxplot(effort~language)

#Better

boxplot(effort~language, names = newNames)

#Rotations

boxplot(effort~language,las = 0, names = newNames)

boxplot(effort~language,las = 1, names = newNames)

boxplot(effort~language,las = 2, names = newNames)

boxplot(effort~language,las = 3, names = newNames)

Sandro Morasca Making Sense out of Software Engineering Data 56/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Scatterplot
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Scatterplot with Regression Line
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R: Basic Plots

#Select Unadjusted Function Points vector

UFP <- desharnais[[9]]

#Building a scatterplot

plot(UFP, effort)

#Building a linear model

fit <- lm(effort~UFP)

#Adding the regression line to the scatterplot

abline(fit)
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R: Basic Plots

#Save a diagram onto a file

png("c:\\RDiagrams\\scatterplot.png")

#Building a scatterplot

plot(UFP, effort)

#Building a linear model

fit <- lm(effort~UFP)

#Adding the regression line to the scatterplot

abline(fit)

dev.off()
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Levels of Measurement/Scale Types

Five scale types/levels of measurement are usually identified

nominal

least informative one

largest set of admissible transformations

ordinal

interval

ratio

absolute

most informative one
smallest set of admissible transformations
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Nominal Scales

Examples:

(non-Computer-Science): gender, species, type of vehicle

(Computer Science): programming language, CASE tool,
development process

Values: labels

Use: classification

Invariance: set of equivalence classes identified by the labels

that is a first piece of information

we can use whatever labels we wish, even numbers, but

the order among them has no meaning

arithmetic operations on them have no meaning
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Nominal Scales Descriptive Statistics

Example: a software system is composed of modules written in
four languages:

Java (46%), FORTRAN(25%), C (10%), Ada (19%)

Cardinality of the data set: 100 modules

Frequencies: p(v)

p(Java) = .46

p(FORTRAN) = .25

p(C) = .10

p(Ada) = .19
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R: Operations on Nominal Variables

#Compute the frequencies

frequencies <- table(dummyLanguage)

newNames <- c("Java", "FORTRAN", "C", "Ada")

row.names(frequencies) <- newNames

frequencies
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Nominal Scales Central Tendency Statistics

Mode: one of the most likely values (there may be more than
one mode)

mode ∈ V (∀v ∈ V p(mode) ≥ p(v))

It is the value on which it makes the most sense to bet on when
we select one value, if no additional information is available

if we have to bet on the language used to write a module
picked at random, we would choose Java
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R: Operations on Nominal Variables

#Compute the mode: index of the language associated

with the maximum frequency

maxIndex <- which.max(frequencies)

maxIndex

#Retrieve the name of the language associated with the

maximum frequency

maxLanguage <- names(maxIndex)

maxLanguage
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R: Writing a Function

#Build a function

mode <- function(x)

{

frequencies <- table(x)

return (names(which.max(frequencies)))

}

#Call a function

mode(dummyLanguage)
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Nominal Scales Dispersion Statistics

Information content

it measures the

degree of uncertainty/lack of knowledge associated with a
probability distribution
amount of information provided by a random experiment
about a probability distribution

Definition formula

H(p) = −
∑
v∈V

p(v) log2p(v)
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Nominal Scales Dispersion Statistics

H(p) was derived based on axioms, including

it is minimum (H(p) = 0) when there is perfect certainty
on the outcome of the random experiment, i.e.,

p(v) = 1 for some v ∈ V and p(u) = 0 for any other uV

it is maximum (H(p) = log2n) when all of the n values are
equally likely

. . .

Example: H(p) = 1.802755
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R: Writing a Long Function

probs <- frequencies/sum(frequencies)

#Long version of function that computes entropy

infoLong <- function(p)

{ info <- 0

for(i in 1:length(p)){

if(p[[i]] != 0){ entropy <- -p[[i]] * log2(p[[i]])

}else{ entropy <- 0 }

info <- info + entropy

}

return (info)

}

infoLong(probs)

#Just checking ...

-(0.46*log2(0.46)+0.25*log2(0.25)+0.1*log2(0.1)+0.19*log2(0.19))
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R: Writing a Compact Function

#Short, more complete version of function that

computes entropy

info <- function(p)

{

p.norm <- p[p>0]/sum(p)

return (-sum(log2(p.norm)*p.norm))

}

info(probs)

info(frequencies)
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Nominal Scales Dispersion Statistics

Gini’s impurity index is a measure of dispersion

G (p) = 1−
∑
v∈V

p2(v)

It measures how often a randomly chosen element from a set
would be incorrectly categorized if it were randomly categorized
according to the distribution of categories in the set

G (p) =
∑
v∈V

p(v)(1− p(v))

Example: G (p) = 0.6798
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R: A Function for Gini

#Function that computes Gini

gini <- function(p)

{

p.norm <- p/sum(p)

return (1-sum(p.norm*p.norm))

}

gini(probs)

#Just checking ...

1-(0.46*0.46+0.25*0.25+0.1*0.1+0.19*0.19)
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Nominal Scales Association Statistics

Can we reasonably sure that modules written in COBOL are
more fault-prone than modules written with C++?

Non Faulty Faulty

C++ 231 20

COBOL 85 16

Use chi-square

statistical tests say YES (α = 0.05)
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R: Chi-square Test

#Row and column names

rownames(mat) <- c("C++","COBOL")

colnames(mat) <- c("Non Faulty","Faulty")

mat

#Run chi-square statistical test

chisq.test(mat)

Sandro Morasca Making Sense out of Software Engineering Data 75/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

R: Complex Objects

#Analyze complex objects

ch <- chisq.test(mat)

ch

str(ch)

ch$p.value

ch$residuals

ch$residuals[1,2]
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R: Chi-square test

#Chi-square test, but something is wrong

desharnais[,2:3]

desharnais[,c(2,3)]

desharnais[,c("V2","V3")]

teamVSleader <- desharnais[,c("V2","V3")]

tab <- table(teamVSleader)

chisq.test(tab)

tab
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Do Clean the Data

Check if there are any

corrupt data

implausible values

missing values

You may take several actions

remove the columns with corrupt data/implausible
values/missing values

remove the rows with corrupt data/implausible
values/missing values

estimate the missing values

. . .
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R: Cleaning the Dataset

#Cleaning the dataset

teamVSleader[teamVSleader[,1] == -1,]

teamVSleader[(teamVSleader[,1] == -1) |

(teamVSleader[,2] == -1),]

teamVSleader[(teamVSleader[,1] != -1) &

(teamVSleader[,2] != -1),]

good <- teamVSleader[(teamVSleader[,1] != -1) &

(teamVSleader[,2] != -1),]

good

length(good)

length(good[,1])

#Chi-square test

goodTab <- table(good)

chisq.test(goodTab)
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Ordinal Scales

Examples:

(non-Computer-Science): hardness, any sort of ranking

(Computer Science): failure criticality, subjective
complexity

Values: ordered labels

Use: ordered classifications

Invariance: order among entities

the ordering among entities is an additional piece of
information over nominal scales

we can still use whatever labels we like, provided that we
know how to order them

if we use numbers as values, the distances between two
numbers have no meaning
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Ordinal Scales Descriptive Statistics

All those for nominal scales, plus

Central Tendency Indicator:

median ∈ V
∑

v<median

p(v) ≤ 0.5 ∧
∑

v>median

p(v) ≤ 0.5

quantiles (percentiles)

quartiles

Dispersion Indicator: interquartile range

How about the average?
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Don’t Use the Average with Ordinal Scales

A company needs to decide whether to use Waterfall (WF) or
Agile development (AD) in the next project

Ten experts are given a questionnaire to give their advice on a
4-value scale with values “poor,” “fair,” “good,” “excellent”

the process with the highest average is chosen

Values WF AD

poor 2 3

fair 3 2

good 4 1

excellent 1 4

avg ? ?
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Don’t Use the Average with Ordinal Scales

The rankings are converted into “numerical” scales

Values WF AD

1 2 3

2 3 2

3 4 1

4 1 4

avg 2.4 2.6

Values WF AD

1 2 3

2 3 2

4 4 1

4.5 1 4

avg 3.15 3.1

The decision depends on the arbitrary choice of values

the decision is arbitrary too, so why have this elaborate
process to make a (deceivingly objective) arbitrary
decision?
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Ordinal Scales Association Statistics

We have two variables

x: independent variable

y: dependent variable

Values Ranks

Obs. x y rx ry
1 43 18 3 1

2 48 27 4 3

3 12 16 1 2

4 31 29 2 4

5 80 90 6 6

6 78 40 5 5

Is there an association between them?
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Ordinal Scales Association Statistics

Spearman’s rho

is Pearson’s correlation coefficient, applied to ranks

ranges between -1 (perfect negative association) and +1
(perfect negative association)

ρ = 1− 6

∑
i∈1..n d

2
i

n3 − n
= 1−

∑
i∈1..n d

2
i

n3−n
6

where

di is the distance between the ranks

n is the number of observations

Sandro Morasca Making Sense out of Software Engineering Data 85/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Ordinal Scales Association Statistics

Values Ranks Distance

Obs. x y rx ry di d2
i

1 43 18 3 1 2 4

2 48 27 4 3 1 1

3 12 16 1 2 -1 1

4 31 29 2 4 -2 4

5 80 90 6 6 0 0

6 78 40 5 5 0 0

ρ = 16(4 + 1 + 1 + 4)/(216− 6) = 0.714
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Ordinal Scales Association Statistics

Kendall’s tau: it ranges between -1 and +1

τ =
2(C − D)

n2 − n
=

C − D
n(n−1)

2

where

C is the number of concordant pairs

D is the number of discordant pairs

n is the number of observations
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Ordinal Scales Association Statistics

Values Ranks C & D

Obs. x y rx ry C D

3 12 16 1 2 4 1

4 31 29 2 4 2 2

1 43 18 3 1 3 0

2 48 27 4 3 2 0

6 78 40 5 5 1 0

5 80 90 6 6 0 0

τ = 2(12− 3)/(36− 6) = 0.6
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R: Statistics for Ordinal Scales

#Compute medians

median(desharnais[,3])

median(effort)

#Compute association indicators

cor.test(good[,1], good[,2], alternative =

"two.sided", method = "spearman")

cor.test(good[,1], good[,2], alternative =

"two.sided", method = "spearman", exact = FALSE)

cor.test(good[,1], good[,2], alternative = "greater",

method = "kendall")

cor.test(good[,1], good[,2], alternative = "less",

method = "kendall")
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Interval Scales

Examples:

(non-Computer-Science): calendar time, centigrade
temperature

(Computer Science): milestone date

Values: numbers

Use: evaluation of distances from a “conventional” origin

Invariance: ratios of interval lengths

m(e1)m(e2)

m(e3)m(e4)
the distance between two entities is an additional piece of
information over ordinal scales
we can still change

reference origin
unit of measurement
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Interval Scales Central Tendency Statistics

All those for ordinal scales, plus

the average value m =

∑
i∈1..n yi

n

The average value is also the specific value of c that minimizes∑
i∈1..n

(yi − c)2

or, equivalently, the average square residual∑
i∈1..n(yi − c)2

n
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Interval Scales Dispersion Statistics

Sample variance

s2 =

∑
i∈1..n(yi −m)2

n

The unbiased estimator of variance is

ŝ2 =

∑
i∈1..n(yi −m)2

n − 1
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Interval Scales Correlation Statistics

Pearson’s r or Pearson product-moment correlation coefficient

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

Pearson’s R2 coefficient of determination

R2 = 1−
∑

i∈1..n(yi − ŷi )∑
i∈1..n(yi − ȳ)2
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R: Statistics for Interval Scales

#Descriptive statistics

mean(effort)

sd(effort)
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Ratio Scales

Examples:

(non-Computer-Science): weight measured in grams,
length measured in meters

(Computer Science): size measured by number of
statements, size measured by LOC

Values: numbers

Use: evaluation of distances from a natural origin

Invariance: ratios of values
m(e1)

m(e2)
the existence of a natural origin is an additional piece of
information over interval scales

we can still change the unit of measurement as we like
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Ratio Scales

Meaningful statements

ratios of values, in particular
ratio of the measure of any entity to the unit of
measurement

Admissible transformations:

m′ = am (with a > 0)
m′(e1)

m′(e2)
=

am(e1)

am(e2)
=

m(e1)

m(e2)

m′ = am + b (with a > 0)
m′(e1)

m′(e2)
=

am(e1) + b

am(e2) + b
6= m(e1)

m(e2)

this is a subset of the transformations of interval scales

Statistics: all those for interval scales, plus

(descriptive) geometric mean
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Ratio Scales Dispersion Statistics

Coefficient of variation

ratio of the standard deviation σ to the expected value µ

cv =
σ

µ

The standard deviation needs to be interpreted in the context
of the expected value
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Do Use Ordinal Scales Association Statistics with
Ratio Measures

Are Spearman’s rho and Kendall’s tau useful?

Asymptotic Relative Efficiency against Pearson parametric
correlation test for bivariate normal distribution is 0.912

using tests on rho or tau with 1,000 observations is as
efficient as using tests on Pearson’s coefficient with 912

Spearman’s rho is better known

Kendall’s tau

has a simpler interpretation

approaches its asymptotic normal distribution faster than
Spearman’s rho
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Absolute Scales

Examples:

(non-Computer-Science): probabilities

(Computer Science): LOC as a measure of the attribute
“number of lines of code”

Values: numbers

Use: count of entities

Invariance: values

Meaningful statements: values

Admissible transformations: none!

m′ = m

Statistics: all those for ratio scalesSandro Morasca Making Sense out of Software Engineering Data 99/212
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Summary of Scale Types

Scale Type Examples Transformations

Nominal Classifications One-to-one

Ordinal Preference, ranking Monotonically increasing

Interval Time, temperature m’ = a m + b (a > 0)

Ratio Length, weight m’ = a m (a > 0)

Absolute Counting m’ = m
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Summary of Statistics

Scale Type Central tendency Dispersion Dependency

Nominal mode H, Gini χ2

Ordinal median quantiles ρ, τ

Interval arith. mean st. dev., range Pearson’s r

Ratio geom. mean cv
Absolute
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Ordinary Least Squares Regression: Assumptions

The true regression line is linear y = αx + β

The values of y for any given x are

independent

identically normally distributed, with

expected value αx + β
variance σ2

e
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Ordinary Least Squares Regression: Basic Ideas

Focus on residuals

resi = yi − αŷi = yi − αxi − β

OLS regression is based on the minimization of the average of
the squared residuals

avg
i∈1..n

[res2
i ] =

∑
i∈1..n(yi − αxi − β)2

n

Estimation model

ŷ = ax + b

α and β: true values
a and b: estimated values
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Ordinary Least Squares Constant Regression

Special case of OLS with no variables

ŷ = mOLS

mOLS is the value of parameter β that minimizes

avg
i∈1..n

[res2
i ] =

∑
i∈1..n(yi − β)2

n

It is well known that mOLS is the arithmetic mean

ŷ = mOLS is also used the reference case to compare OLS
models with

Sandro Morasca Making Sense out of Software Engineering Data 104/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Dispersion

Since mOLS minimizes

avg
i∈1..n

[res2
i ] =

∑
i∈1..n(yi − β)2

n

We take this minimum value as the index of dispersion

s2 =

∑
i∈1..n(yi −mOLS)2

n
s2 is the sample variance
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R: Build OLS Model

#Linear correlation

cor.test(UFP, effort, alternative = "greater", method

= "pearson")

effortVSUFP <- lm(effort~UFP)

str(effortVSUFP)

effortVSUFP$coefficients

summary(effortVSUFP)

coef(summary(effortVSUFP))

coef(summary(effortVSUFP))[2,4]

str(summary(effortVSUFP))

summary(effortVSUFP)$r.squared
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Ordinary Least Squares Regression: Assumptions

We need to check if the assumptions are met

let us check if data are distributed normally across the
regression line

we use a statistical test for normality

we put together all residuals
we use the Shapiro-Wilk test

H0: the distribution of residuals is normal
H1: the distribution of residuals is not normal

:
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R: Statistics for Interval Scales

#Check the applicability of OLS

#Check the applicability of OLS

shapiro.test(effortVSUFP$residuals)

cor.test(effort, UFP, alternative = "two.sided",

method = "spearman")

cor.test(effort, UFP, alternative = "two.sided",

method = "spearman", exact = FALSE)

cor.test(effort, UFP, alternative = "greater", method

= "kendall")

cor.test(effort, UFP, alternative = "less", method =

"kendall")
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Ordinary Least Squares Regression: Alleviating
Problems

What if the assumptions are not met?

First, we can still check if there is an association between
the independent and the dependent variable

Or, we can use two typical approaches

outlier elimination

data transformation
typically a log-log transformation

new dependent variable is the logarithm of the old one
new independent variable is the logarithm of the old one
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Statistical Significance OLS Degree of Correlation

OLS indicator of the degree of correlation

R2
OLS = 1−

∑
i∈1..n(yi−αxi−β)2

n∑
i∈1..n(yi−µ)2

n

Meaning

degree of “improvement” of univariate OLS over constant
OLS

True value of R in OLS is ρOLS

ρOLS = 0⇔ α = 0
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Statistical Significance OLS Statistical Test

Statistic with Student’s t distribution (n − 2 degrees of
freedom)

t =

√
n − 2

1− R2
OLS

ROLS

a
(a− α)

It can be used for testing H0 : α = 0(⇔ ρOLS = 0)

t =

√
n − 2

1− R2
OLS

ROLS

If α = 0 the univariate OLS regression line coincides with the
constant OLS line

y = β
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Practical Measure Validation: Do’s

Building statistical model

it shows that a measure is statistically associated with
another measure

however, this is the same as computing a multidimensional
descriptive statistic

We need to use the model on a test set

a subsequent system

a subset of the training set

K-fold Cross Validation
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Practical Measure Validation: Don’ts

Collecting a distribution of values for an internal measure

characterization

Showing that a relationship exists between an internal measure
X and another internal measure W

it is useless

it does not guarantee that X is related to a practically
useful measure Y even if W is related to Y

Using the wrong kind of model

e.g., a linear regression model to estimate fault-proneness,
which is a probability, so it is between 0 and 1
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Null Hypothesis Statistical Testing

Usually taken as “the null hypothesis vs. the alternative
hypothesis”

but it is not

Make sure what the null hypothesis really is

typically the fact that a parameter is equal to 0

It is not always true that the alternative hypothesis is the one
you want to prove

Why do you choose a hypothesis as the “null” hypothesis?
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Statistical Significance

It is obviously very important, but it is not everything

The p-value is not the probability of obtaining a result by
chance

The p-value is the probability of having obtained the result we
obtained or a more extreme one, under the assumption that the
null hypothesis holds

The more datapoints you have, the more likely you will find a
statistically significant relationship

The statistical significance threshold is obviously arbitrary

0.1, 0.05, 0.001? *, **, ***?

Why not use the p-value without threshold?
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Power of a Statistical Test

A chimerical concept

hardly ever used in Empirical Software Engineering

It depends on

statistical significance (the only thing we can always
control)

number of datapoints

effect size (unknown)

It we knew the effect size, we probably would not even run the
statistical test

Why should we aim at

5% statistical significance

80% power?
Sandro Morasca Making Sense out of Software Engineering Data 116/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Statistical Relevance

Now, you may have found a statistically significant relationship

it may be good for research purposes

Is it any good, practically?

No, unless you can show a large enough effect size
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Effect Size

Quantitative measure of the strength of a phenomenon

(Correlation) Effect sizes based on ”variance explained”

Pearson’ correlation coefficient, eta-squared,
omega-squared . . .

(Difference) Effect sizes based on differences between means

Cohen’s d , Glass’ ∆, Hedges’ g . . .

(Categorical) Effect sizes for associations among categorical
variables

Cohen’s w , Odds ratio, Relative risk, Cohen’s h, . . .

They all come with (subjective) guidelines for the interpretation
of values
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Do Check for Outliers

An outlier

is a data point overly influential for a regression model

may lead an estimation model astray

may make us believe in an incorrect model

may make it more difficult to find a useful model
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Outliers

Outliers may be due to

rare statistical fluctuations (investigate why)

corrupted data
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Do Eliminate Outliers One-by-One Iteratively

A heuristic iterative procedure is typically used on dataset CDS

by removing outliers one—the farthest one—at a time
based on some

outlier criterion
distance function
distance threshold

1: COS := out(CDS, distanceFunction, distanceThreshold)
//COS ⊆ CDS is the set of outliers

2: while COS 6= ∅ do
3: odp := farthest(COS, CDP, distanceFunction)

//odp ∈ COS is the farthest outlier for CDS
CDS := CDS - {odp}
//Remove odp from CDS

4: end while

Sandro Morasca Making Sense out of Software Engineering Data 121/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Don’t Eliminate Sets of Outliers Wholesale

Ineffective way of eliminating outliers

1: COS := out(CDS, distanceFunction, distanceThreshold)
2: while COS 6= ∅ do
3: CDS := CDS - COS
4: end while
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Cook’s Distance

Cook’s distance evaluates the influence on predictions due to a
single data point z in an (v + 1)-dimensional space

v independent variables

1 dependent variables

Definition of Cook’s distance for datapoint z

Cook(z) =

∑
i∈1..n(ŷi ,CDS − ŷi ,CDS−{z})

2

par ·MSE

ŷi ,CDS is the i-th predicted value with the entire dataset

ŷi ,CDS−{z} is the i-th predicted value when point z is
removed

par is the number of parameters in the model

MSE is the Mean Square Error of the model

Thresholds

1, 4/v, 4/(n - v - 1), . . .
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Mahalanobis Distance

The Mahalanobis distance is

the distance of z from the (v + 1)-dimensional center of
mass m

divided by the width in the direction of z of the ellipsoid
that best represents the data set’s probability distribution

The idea is that sheer distance of z from m is not good enough
just because z is far from m does not mean that z is an
outlier

if z is far from m, but “close enough” to the regression
variety (i.e., in the ellipsoid), then it is not an outlier
if z is not far from m, but “far enough” from the
regression variety, then it is an outlier

Mahalanobis(z) =
√

(z −m)S−1(z −m)

where S is the covariance matrix of the dataset
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To Jackknife or not to Jackknife?

The distance of z can be computed in two ways

from the centroid of the entire CDS, or

from the centroid of CDS - {z}

The second distance uses a jackknife procedure

it further removes the influence of z in biasing the position
of the centroid

it is more complex to implement and compute

it is better for eliminating outliers
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Practical Advice

Set a maximum percentage of outliers

you may end up with most of the data points that are
classified as outliers

Accept the result you obtain

removing outliers may very well play “against you”

you may have a great correlation on the entire data set
you may obtain a much worse correlation after you have
removed one or more outliers

the aim of the game is not to obtain a great correlation,
but to obtain a valid, useful model
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R: Cook’s Distance

#Cook’s distance

effortVSUFP = lm(effort~UFP)

cooksDistances <- cooks.distance(effortVSUFP)

cooksDistances

cooksDistances > 4/length(cooksDistances)

cooksDistances > 1

sum(cooksDistances > 4/length(cooksDistances))

sum(cooksDistances > 1)
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R: Cook’s Distance

removeOutliersCook4l <- function(x,y) {

done = FALSE

while ( !done ) {

model = lm(y ~ x)

cooksDistances <- cooks.distance(model)

maxCooksDistance = max(cooksDistances)

l = length(y)

if(maxCooksDistance < 4/l) { done = TRUE; break; }

removeNext = which.max(cooksDistances)

y = y[-c(removeNext)]

x = x[-c(removeNext)]

}

return (list(x,y))

}

nonOutliersCook4l <- removeOutliersCook4l(loc, effort)
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R: Cook’s Distance

removeOutliersCook1 <- function(x,y) {

done = FALSE

while ( !done ) {

model = lm(y ~ x)

cooksDistances <- cooks.distance(model)

maxCooksDistance = max(cooksDistances)

l = length(y)

if(maxCooksDistance < 1) { done = TRUE; break; }

removeNext = which.max(cooksDistances)

y = y[-c(removeNext)]

x = x[-c(removeNext)]

}

return (list(x,y))

}

nonOutliersCook1 <- removeOutliersCook1(loc, effort)

nonOutliersCook1
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Do Use Robust Statistics

Take a data set with n points

Take an estimator

How many of those data points need to be corrupted to lead
the estimator astray?

To find out

move k of them towards infinity

if the estimator does not move towards infinity, the max
value of k/n is an indication of the robustness of the
estimator

Robustness of the average and of the estimators of the
parameters of Ordinary Least Square (OLS) regression: 1/n

one corrupted data point may be enough
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Robust Statistics

Robustness of the median: 50

up to 50% of the data points may be corrupted, still the
median does not go to infinity

Robust statistics are like the median

up to 50% robustness

not more than 50%

otherwise we cannot tell the “good” data points from the
“bad” data points
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Least Median of Squares: Assumptions

The true regression line is linear y = αx + β

The values of y for any given x are

independent

identically distributed

No assumptions about expected value and variance
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Least Median of Squares Regression: Basic Ideas

LMS regression is based on the minimization of the median of
the squared residuals

med
i∈1..n

[res2
i ] = med

i∈1..n
[(yi − αxi − β)2]

Since the squared residuals are ordered like the absolute values,
we can equivalently minimize

med
i∈1..n

[|resi |] = med
i∈1..n

[|yi − αxi − β|]

Least Median of Squares (LMS) regression is a robust
regression technique, originally introduced by Rousseeuw and
Leroy from the University of Antwerpen
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LMS: Basic Ideas

We use the low median

Let us order absolute residuals in ascending order

we want to minimize the value of |resd n
2
e|, the residual in

the middle

We do not care about how big the residuals with i > dn
2
e may

be, so

approximately half of the residuals may be as big as
possible, still the value of |resd n

2
e| will not change, so

LMS is as robust as possible
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Constant LMS Regression Properties

Special case of LMS with no variables

ŷ = mLMS

mLMS is the value of parameter β that minimizes

med
i∈1..n

[|resi |] = med
i∈1..n

[|yi − β|]

mLMS is a new, robust indicator of interval central tendency in
its own right

min{VY } ≤ mLMS ≤ max{VY } (Cauchy’s property)

mLMS{ayi + b} = a ·mLMS{yi}+ b

We also use ŷ = mLMS as the reference case to compare LMS
models
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Constant LMS Regression

mLMS is the midpoint of the narrowest interval that contains at

least dn
2
e data points

median distance of data points from a point v is computed

as maximum distance of closest dn
2
e data points to the

point
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Constant LMS Regression

Take X = 5.5

Point Distance

1 4.5

2 3.5

6 0.5

7 1.5

9 3.5

11 5.5

21 15.5

Point Distance

6 0.5

7 1.5

2 3.5

9 3.5

1 4.5

11 5.5

21 15.5
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Constant LMS Regression

Given any interval, the point that minimizes the maximum
distance to the points in the interval is the midpoint

mLMS is the midpoint of the narrowest interval that

contains at least dn
2
e data points
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Dispersion

Since mLMS minimizes

med
i∈1..n

[|resi |] = med
i∈1..n

[|yi − β|]

We take this minimum value as the index of dispersion

mar = med
i∈1..n

[|yi −mLMS |]
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Univariate LMS Regression

The LMS regression line lies halfway in the narrowest strip

(distance measured along the y-axis) that encloses at least dn
2
e

data points

Sandro Morasca Making Sense out of Software Engineering Data 140/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Statistical Significance LMS Degree of Correlation

Degree of “improvement” of univariate LMS over constant
LMS

R2
LMS = 1− medi∈1..n{|yi − axi − b|}

medi∈1..n{|yi − ȳLMS |}
where ȳLMS is mLMS for the {yi} data set

S2
LMS = 1− medi∈1..n{(yi − axi − b)2}

medi∈1..n{(yi − ȳLMS)2}
(1)

It can be shown that it is always R2
LMS ≤ S2

LMS

same statistical inference method for R2
LMS and S2

LMS

we use R2
LMS

True value of RLMS is ρLMS

ρLMS = 0⇔ α = 0
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Statistical Significance LMS Statistical Test

If α = 0 the univariate LMS regression line coincides with the
constant LMS line

the distributions of absolute residuals from univariate LMS
regression line and constant LMS line coincide

the median of their difference is null

We test if the median of their difference is null

nonparametric test

Fisher’s sign test’s statistic: we can use

exact test, or
asymptotic approximation
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Data Set desharnais1 1 1 (PROMISE Data Set)

Descriptive statistics

n min max med mOLS σOLS mLMS marC
Effort 81 546 23940 3647 5046.31 4419.77 2786 1386
Trans. 81 9 886 140 182.12 144.04 93 53

Entities 81 7 387 99 122.33 84.88 65 34
UFP 81 73 1127 266 304.46 180.21 239 82
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Data Set desharnais1 1 1 OLS Results

Effort is the dependent variable

Variable n a b p R2
OLS w

UFP 81 17.30 -220.08 < 0.0001 0.50 < 0.0001

UFP 50 12.64 211.98 < 0.0001 0.50 0.3276

Trans. 81 17.85 1795.19 < 0.0001 0.34 < 0.0001

Trans. 58 15.26 1251.84 < 0.0001 0.20 0.2920

Entities 81 26.57 1796.33 < 0.0001 0.26 < 0.0001

Entities 53 34.88 217.46 < 0.0001 0.43 0.0130
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Effort vs. UFP after Removal of Outliers
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Regression Line after Removal of Outliers
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OLS and LMS Regression Lines

Before removal: black line
After removal: red line
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Data Set desharnais1 1 1 LMS Results

Effort is the dependent variable

Variable a b p marU R2
LMS S2

LMS

UFP 9.27 803.27 ¡0.0001 925.04 0.33 0.556

Trans. 7.29 2239.56 0.0027 1111.40 0.20 0.36

Entities 9.21 1677.13 0.0174 1150.24 0.17 0.31
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R: LMS

#LMS regression

#load package MASS

lms.effortVSUFP <- lmsreg(UFP, effort)

lms.effortVSUFP

summary(lms.effortVSUFP)

str(lms.effortVSUFP)

#Compute LMS unidimensional central tendency indicator

lqs(effort~effort, method = "lms")
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OLS Regression Lines

Before removal: black line
After removal: red line
LMS: blue line
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R: Statistical Significance of LMS Models

#Step 1: compute m_LMS, the LMS unidimensional central

tendency indicator

m_LMS <- lqs(effort~effort, method = "lms")

m_LMS

str(m_LMS)

m_LMS$coefficients

#Step 2: compute reg_LMS, the LMS regression line

reg_LMS <- lqs(effort~UFP, method = "lms")

reg_LMS

str(reg_LMS)

reg_LMS$coefficients

reg_LMS$fitted.values
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R: Statistical Significance of LMS Models

#Step 3: compute absRes0, the vector of the absolute

residuals of the data from m_LMS: use function

abs(x)

absRes0 <- abs(effort-m_LMS$fitted.values)

#Step 4: compute absRes1, the vector of the absolute

residuals of the data from reg_LMS

absRes1 <- abs(effort-reg_LMS$fitted.values)

#Step 5: compute g, the number of times a residual in

absRes0 is greater than the corresponding residual

in absRes1

diff <- absRes0 - absRes1

length(diff[diff>0])

#Step 6: compute binom.test(g, length(effort))

binom.test(length(diff[diff>0]),length(effort))
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Binary Logistic Regression

Logistic Regression is a probability estimation technique

P(Y = Positive|X = x) =
ec0+c1x1+...+cvxv

1 + ec0+c1x1+...+cvxv

Response variable

in Binary Logistic Regression, the response variable is a
nominal measure Y can only take two values, Negative
and Positive

Logistic Regression provides the probability that
Y = Positive, for given values of the independent variables
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Model
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Logistic Regression

S-shaped curve between a given Xi and P (all other Xj ’s are
constant) is

very steep: Xi has a very large impact on Y

when the curve is step-like, there is perfect separation
between negative and positive estimates

quite flat: Xi has a small impact on Y , and is not useful
for classification

when the curve is totally flat, there is no impact of Xi on Y

Special case of Binary Logistic Regression

constant model, i.e., without variables

P(Y = Positive|underlineX = x) =
APtr

ntr
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Logistic Regression

Coefficients are estimated via Maximum Likelihood Estimation

with usual assumption of independence of observations

Existence of impact of Xi is assessed via the p-value of ci

Goodness-of-fit: proportion of log-likelihood explained by the
BLR model (ranges between 0 and 1): high values are rare

R2
BLR =

LL0 − LL

LL0

for technical reasons, high values are rare

LL: log-likelihood of BLR model

LL0: log-likelihood of BLR model without variables

LL0 = ANtr log
ANtr

ntr
+ APtr log

APtr

ntr
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R: Logistic Regression

#Upload a dataset

mc2 <-

read.csv(file="j:\\RData\\mc2.txt",head=TRUE,sep=",")

mc2

#Extract response variable

faulty <- mc2[40][[1]]

faulty

#Plot the response variable: not very good

hist(faulty)

#Plot the response variable: this is better

hist(faulty, breaks = 2)
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R: Logistic Regression

#Plot the response variable: not useful

boxplot(faulty)

#Extract independent variable loc

loc <- mc2[1][[1]]

#Plot the response variable: this is better

boxplot(LOC_BLANK~Defective, mc2)

plot(loc, faulty)

#Show histograms

locNonFaulty <- loc[faulty %in% 0]

hist(locNonFaulty, breaks = 20)

locFaulty <- loc[faulty %in% 1]

hist(locFaulty, breaks = 20)
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R: Logistic Regression

#Build univariate Binary Logistic Regression model

faultyVSloc <- glm( faulty~loc,

family=binomial(link="logit"))

faultyVSloc

summary(faultyVSloc)

str(summary(faultyVSloc))

coef(summary(faultyVSloc))
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R: Logistic Regression

#Find the range of the independent variable

range(loc)

#Plot the Binary Logistic Regression model

xweight <- seq(min(loc), max(loc)*1.1, 0.1)

yweight <- predict(faultyVSloc, list(loc =

xweight),type="response")

plot(loc, faulty, pch = 16, xlab = "loc", ylab =

"faulty")

lines(xweight, yweight)
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R: Logistic Regression

#Plot thresholds on the model

faultyProportion <- sum(faulty)/length(faulty)

faultyProportion

abline(h=faultyProportion)

coef(faultyVSloc)

x <- (log(faultyProportion/(1-faultyProportion))-

coef(faultyVSloc)[1])/coef(faultyVSloc)[2]

abline(v = x)
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R: Logistic Regression

#Build univariate Binary Logistic Regression model

with bc as independent variable

bc <- mc2[2][[1]]

boxplot(BRANCH_COUNT~Defective, mc2)

faultyVSbc <- glm(faulty~bc,

family=binomial(link="logit"))

faultyVSbc

summary(faultyVSbc)

#Build multivariate Binary Logistic Regression model

with loc and bc as independent variables

faultyVSlocbc <- glm(faulty~loc+bc,

family=binomial(link="logit"))

summary(faultyVSlocbc)
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Classification

A fault-proneness model estimates the probability that a
software module is faulty
That is not good enough in practice, because practitioners

need to classify modules as fault-prone and not-fault-prone

need to know the safe ranges for measures

may need to find safe, acceptable, and unsafe ranges

We need thresholds in addition to fault-proneness models
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Model
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Test Set
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Threshold on Fault-proneness
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Threshold on Independent Variable
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False Negatives
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False Positives
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True Negatives
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True Positives
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Contingency Table

Actual
Non-faulty Faulty

E
st

im
at

ed Non-faulty TN FN EN
Faulty FP TP EP

AN AP n
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Classification Thresholds: Do’s

Choose meaningful thresholds

typically data-dependent

Examples

ttr = APtr/ntr : known proportion of faulty modules in the
training set

probability of picking a faulty module in the training set at
random, i.e., without any further information about the
module

tts = APts/nts : unknown proportion of faulty modules in
the test set

tall = APall/nall : unknown proportion of faulty modules in
the entire data set

Sandro Morasca Making Sense out of Software Engineering Data 173/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Classification Thresholds: Don’ts

Data-independent thresholds

Example

t = 0.5: a theoretical threshold, used for no prior
knowledge

Researcher-dependent thresholds

any threshold that will get me good results

e.g., an unreasonably low fault-proneness threshold, so all
modules are classified fault-prone

all actually faulty modules are included and Recall = 1!

but it’s not even necessary to make all of this effort to get
this result . . .
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Accuracy Indicators

Precision: proportion of estimated positives that are actually
positive

Precision =
TP

EP

Recall : proportion of actual positives that are also estimated as
positives

Recall =
TP

AP

Accuracy : proportion of correct classifications

Recall =
TP + TN

n
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Precision vs. Recall

Ideally, both Precision and Recall should be maximized

contrasting goals

Trivial decision criterion: estimate all datapoints positive

t = 0

Recall = 1, Precision = ?

Other decision criterion

we may miss some true positives but

detect some true negatives

have some false negatives

Precision may go up (fewer false positive detected), but
recall may go down

We need to make a decision based on the risk of errors
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Accuracy Indicators

F-measure: harmonic mean of Precision and Recall

FM =
2

1
Precision + 1

Recall

Weighted F-measure: weighted harmonic mean of Precision
and Recall (w ∈ [0, 1])

FM(w) =
1

w
Precision + 1−w

Recall

Sandro Morasca Making Sense out of Software Engineering Data 177/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Accuracy Indicators

φ: quantifies the degree of association in 2 × 2 tables

φ =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
=

√
χ2

n

also known as Matthews’ Correlation Coefficient

For r × c tables, use Cramer’s V (where k = min{r , c})

V =

√
χ2

n(k − 1)

φ = V for 2 × 2 tables

φ and V are statistically well-founded

φ and V come with statistical tests, based on χ2
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Tree-building Algorithms

A classification tree allows the prediction of the value

of one variable (the dependent variable) of an instance,
based on

the values of other variables of the instance (the
independent variables)

We consider a binary dependent variable Y (e.g., the presence
of faults in a software module) with values

Y = 0: e.g, no faults in a module, and

Y = 1: e.g., at least one fault in the module
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ID3

ID3 can be used only with discrete independent variables:

nominal variables, e.g., programming language

ordinal variables, e.g., failure severity

ID3 uses the independent variables to recursively build a
classification tree that can be used to classify new instances

At the beginning of the process, we use the entire set of
instances to classify a new instance, based on the probability
distribution of the independent variable Y

Sandro Morasca Making Sense out of Software Engineering Data 180/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Building a Classification Tree with ID3

Sandro Morasca Making Sense out of Software Engineering Data 181/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

ID3

The independent variables may help classify the instances

for example, modules written in one programming
language may be more error-prone than the others

Given a set of independent variables (X ,W ,Z , . . .), we choose
first the one that provides the largest reduction in some
dispersion/uncertainty figure of merit
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Figures of Merit

Information gain H(Y )− H(Y |X ), with

H(Y ) = −
∑
y∈VY

p(y) log2p(y)

H(Y |x) = −
∑
y∈VY

p(y |x) log2p(y |x)

H(Y |X ) =
∑
y∈VY

p(x)H(Y |x)

Information gain ratio
H(Y )− H(Y |X )

H(X )

to account for the fact that independent variables with
more values tend to provide larger information gains

Average Gini

avg
x∈VX

[Ginix ] = 1−
∑
y∈VY

p2(y |x)
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Building a Classification Tree with ID3
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ID3

ID3 recursively builds a subtree from each node, until

the uncertainty reduction obtained with any independent
variable is below a specified threshold, or

the number of instances associated with the node is below
a specified threshold

to reduce the risk of overfitting

Each node is associated with a conditional probability
distribution: it is conditional on the values of the attributes on
the path from the root down to the node
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Building a Classification Tree with ID3
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ID3: Stopping Criteria

ID3 recursively builds a subtree from each node, until

the uncertainty reduction obtained with any independent
variable is below a specified threshold, or

the number of instances associated with the node is below
a specified threshold

to reduce the risk of overfitting

Each node is associated with a conditional probability
distribution: it is conditional on the values of the attributes on
the path from the root down to the node

Sandro Morasca Making Sense out of Software Engineering Data 187/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Bayes Classifiers

Bayes Classifiers are based on a property of probabilities of
events

p(A,B) = p(A|B)p(B) = p(B|A)p(A)

We use

event A: Y = y

event B: X1 = x1, . . . ,Xv = xv

Here’s Bayes’ Theorem

p(Y = y |X1 = x1, . . . ,Xv = xv ) =

p(X1 = x1, . . . ,Xv = xv |Y = y)

p(X1 = x1, . . . ,Xv = xv )
p(Y = y)
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Prior Distribution

p(Y = y) is the probabilistic knowledge that Y = y based
before getting more information, that is, on the entire
population

probability that a software component is Y = Faulty ,
without any further information on the component
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Prior Distribution

The prior distribution is the crux of all Bayesian approaches

how do we know it?

Different strategies

equiprobable distribution

it reflects no previous knowledge
p(Y = Faulty) = 0.5 = p(Y = Nonfaulty)

Maximum Likelihood Estimation for the probability of
each event based on the training set

p(Y = y) =
observationsforwhichY = y

n
p(Y = Faulty) = 0.2 and p(Y = Nonfaulty) = 0.8
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Estimate Prior Distribution

Use Y data, so

p(Faulty) =
AP

n

p(NonFaulty) =
AN

n
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Posterior Distribution

p(Y = y |X1 = x1, . . . ,Xv = xv ) is the probabilistic knowledge
that Y = y after getting more information on the component,
that is, on a specific subpopulation

probability that a software component is Y = Faulty ,
when it is known that it is X1 = interface component,
written in X2 = Java, by X3 = inexperienced programmer

this is the value that we want to compute

Sandro Morasca Making Sense out of Software Engineering Data 192/212



Motivations

Goals

Measurement

Descriptive
Analysis

Levels of
Measurement

OLS

Outliers

Robust
Regression

LMS

Logistic
Regression

Classification

Model
Validation

Final Notes

Likelihood

p(X1 = x1, . . . ,Xv = xv |Y = y) is the probability of obtaining
X1 = x1, . . . ,Xv = xv when Y = y , that is, by restricting the
sample

probability that a software component is
X1 = interface component, written in X2 = Java, by
X3 = inexperienced programmer , given that is Y = Faulty

this is obtained via a model
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Evidence

p(X1 = x1, . . . ,Xv = xv |Y = y) is the probabilistic knowledge
that X1 = x1, . . . ,Xv = xv on the entire population

probability that a software component is
X1 = interface component, written in X2 = Java, by
X3 = inexperienced programmer , regardless of the fact
that it is or it is not faulty

how can we know it?

luckily enough, it does not matter
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Decision Procedure: Prior

If I have to bet on the outcome of an experiment before getting
any additional information, it would be rational to bet on the
outcome with the highest probability according to the prior
distribution

value Y = y that maximizes p(Y = y)

if p(Y = Faulty) = 0.2 and p(Y = NonFaulty) = 0.8, it is
rational to say that

any component taken at random is nonfaulty
any new component (assuming it is from the same
population) is non-faulty
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Decision Procedure: Posterior

If I have to bet on the outcome of an experiment after getting
more information, it would be rational to bet on the outcome
with the highest probability according to the posterior
distribution

value Y = y that maximizes
p(Y = y |X1 = x1, . . . ,Xv = xv )

if p(Y = Faulty |X1 = interface component,X2 =
Java,X3 = inexperienced programmer) = 0.6 and
p(Y = Nonfaulty |X1 = interface component,X2 =
Java,X3 = inexperienced programmer) = 0.4, it is
rational to say that

any component taken at random is faulty
any new component (assuming it is from the same
population) is faulty
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Decision Procedure: Evidence

It is not necessary to know the evidence
p(X1 = x1, . . . ,Xv = xv |Y = y), because

it does not depend on the specific outcome

it is a proportionality factor

We take the value Y = y that maximizes
p(Y = y |X1 = x1, . . . ,Xv = xv |Y = y) ∝ p(Y = y |X1 =
x1, . . . ,Xv = xv |Y = y)p(Y = y)
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Näıve Bayes Classifiers

We need to know the joint distribution of X1 = x1, . . . ,Xv = xv
when Y = y In general (Bayes Theorem again!)

p(X1 = x1, . . . ,Xv = xv |Y = y) =

p(X1 = x1|Y = y)p(X2 = x2, . . . ,Xv = xv |Y = y ,X1 = x1) =

p(X1 = x1|Y = y)p(X2 = x2|Y = y ,X1 = x1)p(X3 = x3, . . . ,Xv = xv |Y = y ,X1 = x1,X2 = x2) =

. . . =

p(X1 = x1|Y = y)p(X2 = x2|Y = y ,X1 = x1) . . . p(Xv = xv |Y = y ,X1 = x1,X2 = x2,Xv−1 = xv−1)
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Näıve Bayes Classifiers

How can we know all of these conditional probability
distributions?

Approximation: conditional independence among the X ’s

p(X1 = x1, . . . ,Xv = xv |Y = y) =

p(X1 = x1|Y = y)p(X2 = x2|Y = y) . . . p(Xv = xv |Y = y)

For each distribution, we build a model

binomial, Poisson, normal, Gamma

p(X1 = interface component|Y = Faulty)
p(X2 = Java|Y = Faulty)
p(X3 = inexperienced programmer |Y = Faulty)
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Estimate Posterior Distribution

Model x when y is known

binomial, Poisson, normal, Gamma
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Estimate Posterior Distribution

When Y = NonFaulty
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Validation

Building good models requires

model selection

performance estimation

In model selection, we need to identify

the functional form

the “optimal” parameter(s)

In performance estimation, we need to estimate how well it will
perform

usually, the true error rate, i.e., the classifier’s error rate
on the entire population
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Validation

Validation would be perfect if we knew the entire population

but why estimate anything, then?

In real life, we have a sample

How do we use it best?
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Validation

First approach

use the entire sample to train the classifier (= build the
model)

estimate the error rate

Two fundamental problems

the final classifier is tailored on the sample and will
typically overfit it

especially classifiers with lots of parameters

the error rate estimate will be optimistic (lower than the
true error rate)

one may very well have 100% correct classification on
training data
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Validation

Ideally, we should use the model obtained on a data set on a
set of data points from subsequent projects

this is not always possible

A practically useful approach split the available data into
disjoint subsets

the holdout method

Split dataset into two groups

Training set: used to train the classifier

Test set: used to estimate the error rate of the trained
classifier
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Validation

Two basic problems

in small datasets, we cannot afford leaving out some of the
dataset for testing the classifier later on

there is randomness in selecting the training and the
testing set

what if we are not lucky in splitting the dataset?

Techniques exist to deal with these problems

Cross Validation

Random Subsampling

K-Fold Cross-Validation

Leave-one-out Cross-Validation

They require more computations than a one-shot holdout
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Random Subsampling

Perform k data splits of the dataset

at each data split i

randomly select a (fixed) number of observations

retrain the classifier from scratch with the training
observations

estimate the error Ei with the test observations

The true error estimate is obtained as the average of the
separate estimates Ei
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K-fold Partitioning

Create a K-fold partition of the dataset

for each of the K experiments, use K-1 folds for training
and the remaining one for testing

K-fold Cross validation is similar to Random Subsampling

advantage: all the observations in the dataset are
eventually used for both training and testing

The true error is estimated as the average error rate
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Leave-one-out Cross Validation

It is a special case of K-fold Cross Validation

with K = N, equal to the total number of examples

for a dataset with N examples, perform N experiments

for each experiment, use N-1 examples for training and the
remaining example for testing

The true error is estimated as the average error rate
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Choosing the Number of Folds

By increasing the number of folds, also increase

the accuracy of the true error rate estimator

the variance of the true error rate estimator

the computation time

The choice of the number of folds depends on the size of the
dataset

for large datasets, even 3-fold Cross Validation will be
quite accurate

for small datasets, we may have to use leave-one-out in
order to train on as many examples as possible

Common choice for K-fold Cross Validation: K=10
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Do Examine Threats to Validity

Dealing with the threats to validity is what we have been trying
to do all along

Internal Validity

External Validity

Construct Validity
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Do Show Negative Results

The set of published studies is clearly biased

only the studies with a happy ending are usually published

This does not make much sense

knowing that something does not work may be even more
important that knowing that something else works

Do not hide your negative results
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