

## A Brief Introduction to Deep Learning and Bayesian Approach in Disease Prediction

IDA Research Group

Weibo Liu and Leila Yousefi

Dept. of Computer Science, Brunel University London, London, UK

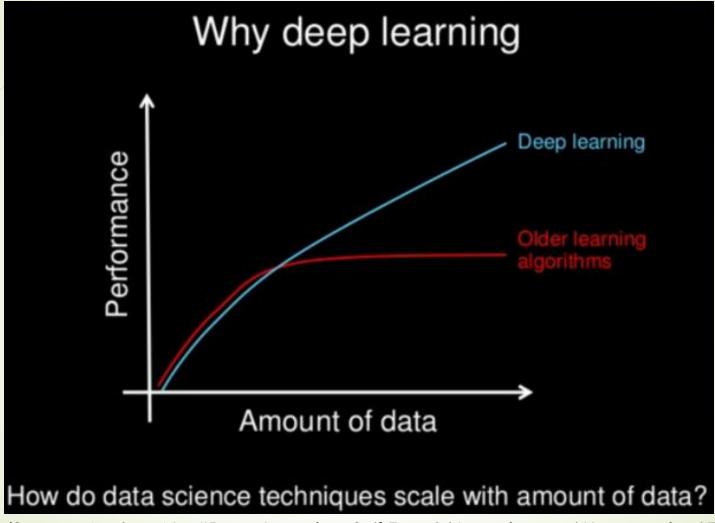
## Outline

- Part 1:
  - Motivation
  - Three deep learning architectures
- Part 2:
  - Disease Prediction using Bayesian Network and Latent variable
  - Inductive Causation\* algorithm
  - ► History of Bayesian Deep Learning
  - Bayesian deep Learning

#### Motivation

Deep Learning is a machine learning technique based on big data and aims to learning representations.

Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep learning techniques have drawn ever-increasing research interests.



(Source: Andrew Ng, "Deep Learning, Self-Taught Learning and Unsupervised Feature Learning", 2013)

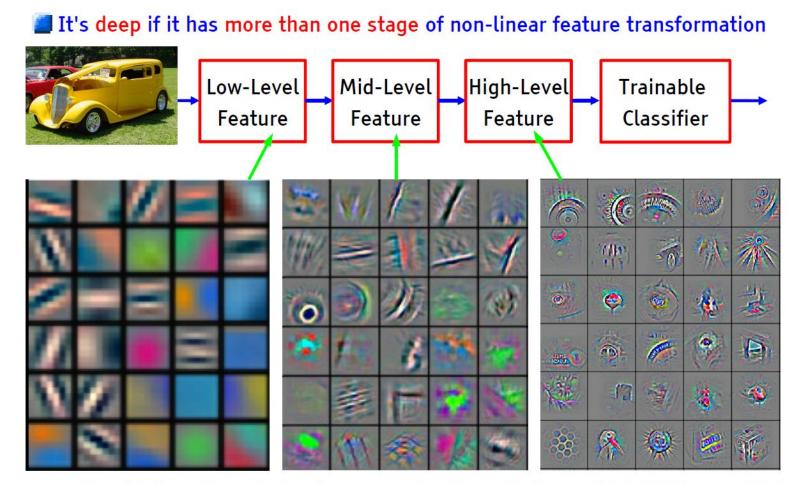
### The Breakthrough in 2006:

- Geoffrey E. Hinton, "A fast learning algorithm for deep belief nets", University of Toronto.
- 2. Yoshua Bengio, "Greedy layer-wise training of deep networks", University of Montreal.
- Yann LeCun, "Efficient learning of sparse representations with an energy-based model", New York University.







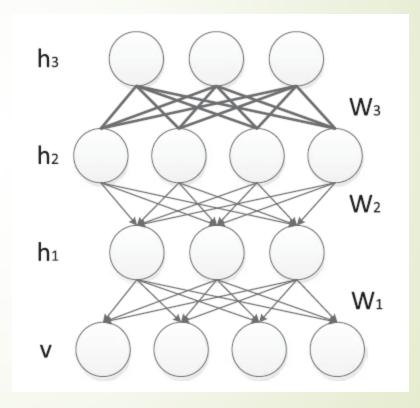


Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

(Source: Yann LeCun, Deep Learning Tutorial, ICML, Atlanta, 2013-06-16)

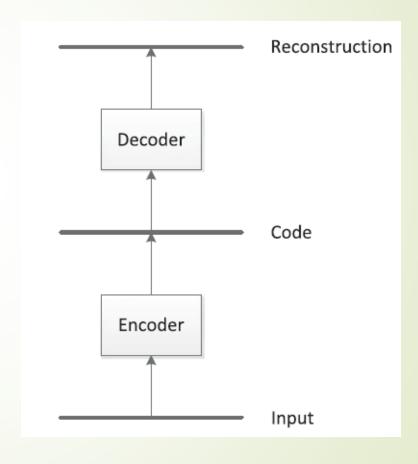
## 1. Deep Belief Net

- The DBNs are composed of multiple layers of stochastic and latent variables and can be regarded as a special form of the Bayesian probabilistic generative model.
- Compared with ANNs, DBNs are more effective, especially when applied to problems with unlabeled data.



#### 2. Autoencoder

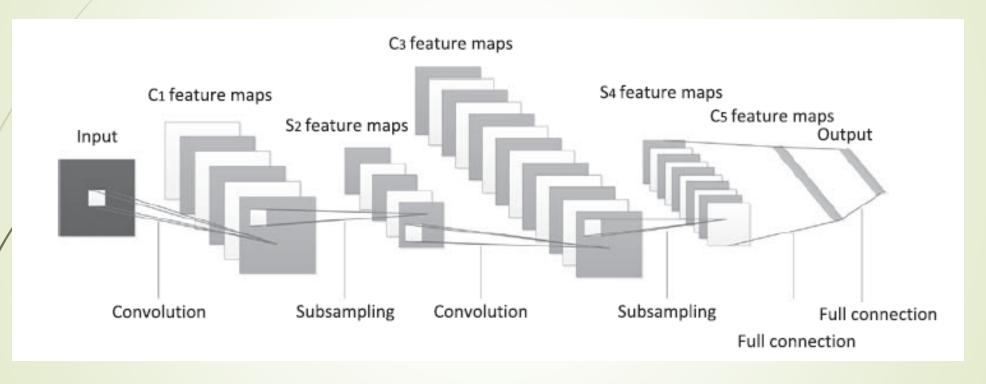
- AE is an unsupervised learning algorithm used to efficiently code the dataset for the purpose of dimensionality reduction.
- The AE is a one-hidden-layer feed-forward neural network similar to the multilayer perceptron.



## 3. Deep Convolutional Neural Network

- CNNs are a subtype of the discriminative deep architecture and have shown satisfactory performance in processing two-dimensional data with grid-like topology, such as images and videos. The architecture of CNNs is inspired by the animal visual cortex organization.
- In CNNs, the convolution has replaced the general matrix multiplication in standard NNs. As such, the number of weights is decreased, thereby reducing the complexity of the network.

- Deep Convolutional Neural Network



## **Predicting Disease Complications**

Using Hidden Variable Discovery for Learning

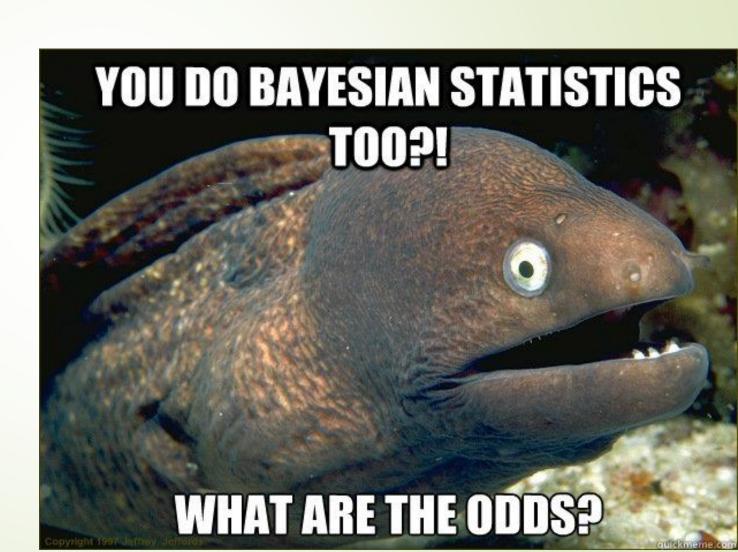
Dynamic Bayesian

Networks

and

Bayesian Deep learning

IDA Research Group



## History of Bayesian Neural Network (BNN)

Approximate Inference in Bayesian Neural Networks

- Laplace Approximation (David MacKay-1992)
- Minimal Description Length (Hinton and Van Kamp-1993)
- Hamiltonian Monte Carlo (Radford Neal-1995)
- Ensemble Learning (Barber and Bishop-1998)
- Gal and Ghahramani:
  - Approximate Dropout NN and reparameterised posterior ad normal priors over network weights.
  - Optimising any Neural Network with dropout is equivalent to a form of approximate Bayesian Inference.
  - A network trained with dropout already is a Bayesian Neural Network!

Dropout is a regularization technique for reducing overfitting in NN by co-adaptations on training data. (Dropping out Hidden and observed units)

We need to approximate the weight of posterior in BNN

13

#### Bayesian Reasoning

#### Deep Learning

Pros.

- A framework for inference and decision making
- Unified framework for building,
   Inference, prediction and decision making
- Explicit accounting for uncertainty and variability outcomes.
- Robust to overfitting, tools for model selection and composition.

  Cons.
- Many coupled and linear models
- Potentially intractable inference, computationally expensive or long simulation time.

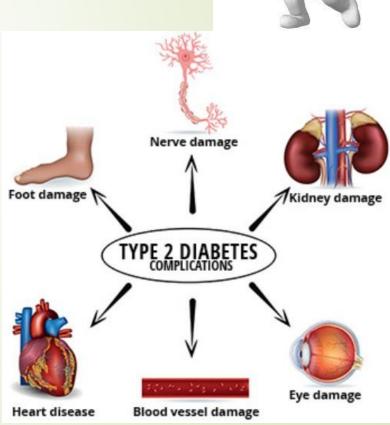
- Rich non-linear models for classification and sequence prediction.
- Scalable learning using stochastic approximation and conceptually simple.
- Easily compostable with other gradient-based methods.
- Only estimates the points over confidently.
- Require large amount of labelled data.
- Hard to score models,
   do selection and complexity
   penalisation.

Natural to marry these approaches



## Diabetes & Its Complications

- Type 2 Diabetes Mellitus (T2DM), which is a non-insulin dependent diabetes or adult-onset diabetes.
- Type 2 Diabetes Mellitus (T2DM) most common form.
- Accounting for at least 90% of all cases.
- The World Health Organization (WHO) estimates that by 2030
   ~550 million people suffering.
- Complications such as Eye and Liver Disease are common in Diabetes.
- Predicting these earlier very valuable but difficult.
- Using Latent variable to capture.

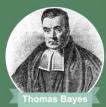


## Introduction to Bayesian Modeling

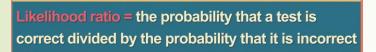
- The theorem was invented by an english reverend Thomas Bayes (1701-1761) and published posthumously (1763).
- Given a prior state of knowledge or belief, it tells how to update beliefs based upon observations (current data).

#### **BAYES' THEOREM**

$$P(A|B) = \frac{P(B|A)^*P(A)}{P(B)}$$



## Bayesian and what is Odds?



**Positive Likelihood** 

LR-= 1 - sensitivity
specificity

**Positive Likelihood** 

LR+ = sensitivity
1-specificity

|               | Disease<br>Positive          | Disease<br>Negative          |
|---------------|------------------------------|------------------------------|
| Test Positive | <b>A</b><br>(True Positive)  | <b>B</b><br>(False Positive) |
| Test Negative | <b>C</b><br>(False Negative) | <b>D</b><br>(True Negative)  |

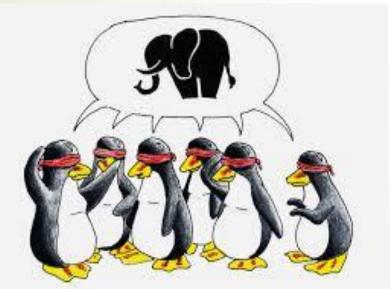


## IC\* (inductive causation) algorithm

- In the framework of Pearl's causality, algorithms IC and IC\* provide a procedure to determine which causal connections among nodes in a network can be inferred from empirical observations.
- Even in the presence of latent variables, indicating the limits of what can be learned without active manipulation of the system.
- Established to analyze causal influences (effective connectivity) among T2DM features.
- Learn a partially oriented DAG (pattern) with latent variables
- The output P is an adjacency matrix, in which:
- P(i,j) = -1 if there is either a latent variable L such that i <-L-> j OR there is a directed edge from i->j.
- P(i,j) = -2 if there is a marked directed i-\*>j edge.
- P(i,j) = P(j,i) = 1 if there is and undirected edge i—j.
- P(i,j) = P(j,i) = 2 if there is a latent variable L such that i<-L->j.

## Latent Variable discovery

- IC\* algorithm is a constraint based methods with an informative graph, which applies conditional independence analysis to infer casual structures.
- The learned DAG will not be unique
- Latent variable:
  - Some variables are unmeasured, called hidden or latent variables
  - The space of possible structures with latent variables is unbounded.

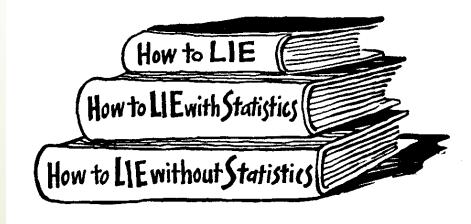




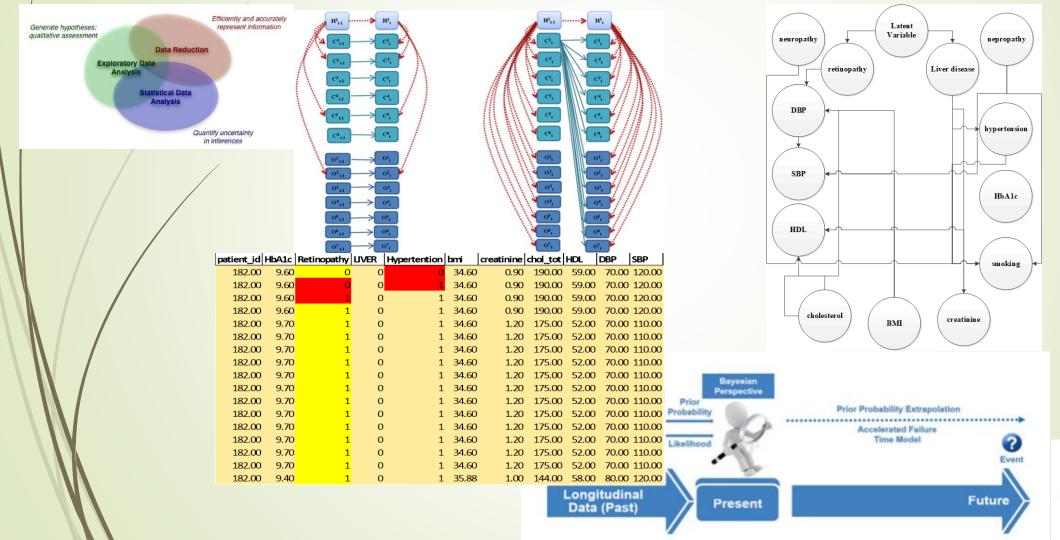


## Step-wise Approach

- For all undiagnosed patients for a specific comorbidity Randomly chosen two consecutive time points of data [0 0].
- For all patients diagnosed with a specific comorbidity selected the two consecutive time points that represent the switch from no comorbidity to comorbidity [0 1].
- Randomly resample from the undiagnosed patients so that the same number of pairs appear as for diagnosed patients.



# Data and structure





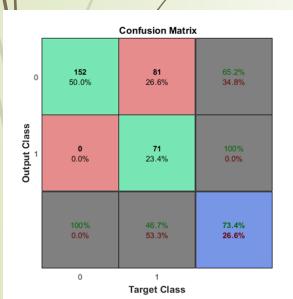
21

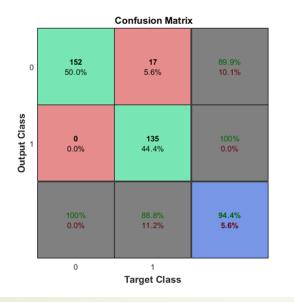
Predicted Latent variable pattern VS T2DM complication and Features

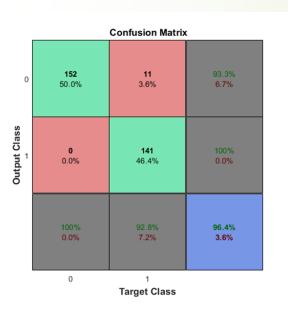
No Latent variable

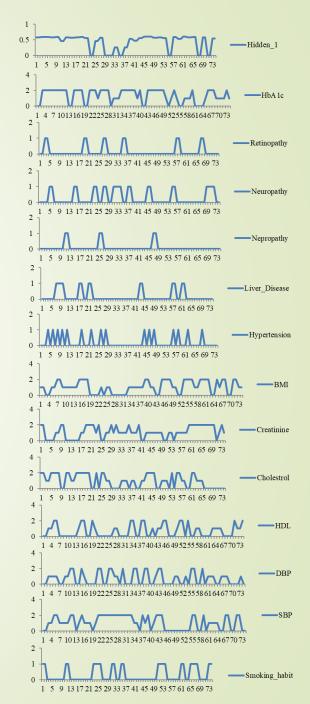
First Step using IC\*

Second Step Using IC\*









## Thank you for listening!

Any Question?

