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Motivation

Deep Learning is a machine 

learning technique based on big data and 
aims to learning representations. 

Since the proposal of a fast learning 
algorithm for deep belief networks in 2006, 

the deep learning techniques have drawn 
ever-increasing research interests. 
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(Source: Andrew Ng, “Deep Learning, Self-Taught Learning and Unsupervised Feature 

Learning”, 2013)
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The Breakthrough in 2006:
1. Geoffrey E. Hinton, “A fast learning algorithm for deep 

belief nets”, University of Toronto.
2. Yoshua Bengio, “Greedy layer-wise training of deep 

networks”, University of Montreal.
3. Yann LeCun, “Efficient learning of sparse 

representations with an energy-based model”,  New 

York University.
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(Source: Yann LeCun, Deep Learning Tutorial, ICML, Atlanta, 2013-06-16)
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Three deep learning architectures

1. Deep Belief Net
 The DBNs are composed of

multiple layers of stochastic
and latent variables and
can be regarded as a
special form of the
Bayesian probabilistic
generative model.

Compared with ANNs,
DBNs are more effective,
especially when applied to
problems with unlabeled
data.

7



Three deep learning architectures

2. Autoencoder
AE is an unsupervised 

learning algorithm used 
to efficiently code the 
dataset for the purpose 
of dimensionality 
reduction.

 The AE is a one-hidden-
layer feed-forward 
neural network similar to 
the multilayer 
perceptron.
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Three deep learning architectures

3. Deep Convolutional Neural Network
• CNNs are a subtype of the discriminative deep

architecture and have shown satisfactory

performance in processing two-dimensional data
with grid-like topology, such as images and videos.

The architecture of CNNs is inspired by the animal
visual cortex organization.

• In CNNs, the convolution has replaced the general
matrix multiplication in standard NNs. As such, the

number of weights is decreased, thereby reducing
the complexity of the network.
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Three deep learning architectures
- Deep Convolutional Neural Network
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History of Bayesian Neural Network (BNN)

Approximate Inference in Bayesian Neural Networks

 Laplace Approximation (David MacKay-1992)

 Minimal Description Length (Hinton and Van Kamp-1993)

 Hamiltonian Monte Carlo (Radford Neal-1995)

 Ensemble Learning (Barber and Bishop-1998)

 Gal and Ghahramani :

 Approximate Dropout NN and reparameterised posterior ad normal priors over network weights.

 Optimising any Neural Network with dropout is equivalent to a form of approximate Bayesian 
Inference.

 A network trained with dropout already is a Bayesian Neural Network!

Dropout is a regularization technique for reducing overfitting in NN by co-adaptations on training data. 
(Dropping out Hidden and observed units)

We need to approximate the weight of posterior in BNN 
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Bayesian Deep Learning

Bayesian Reasoning                                  Deep Learning

Pros.

 A framework for inference and

decision making

 Unified framework for building,

Inference, prediction and decision making

 Explicit accounting for uncertainty and

variability outcomes.

 Robust to overfitting, tools for model 

selection and composition. 

 Only estimates the points over confidently.

 Require large amount of labelled data.

 Hard to score models, 

do selection and complexity 

penalisation.

 Rich non-linear models for classification and 

sequence prediction.

 Scalable learning using stochastic approximation 

and conceptually simple.

 Easily compostable with other gradient-based 
methods.

Cons.

 Many coupled and linear models

 Potentially intractable inference, computationally 
expensive or long simulation time.

Natural to marry these approaches
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Diabetes & Its Complications

 Type 2 Diabetes Mellitus (T2DM), which is a non-insulin 

dependent diabetes or adult-onset diabetes.

 Type 2 Diabetes Mellitus (T2DM) most common form.

 Accounting for at least 90% of all cases.

 The World Health Organization (WHO) estimates that by 2030
~550 million people suffering.

 Complications such as Eye and Liver Disease are common in
Diabetes.

 Predicting these earlier very valuable but difficult.

 Using Latent variable to capture. 
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15 Introduction to Bayesian Modeling

 The theorem was invented by an english reverend Thomas Bayes (1701-

1761) and published posthumously (1763).

 Given a prior state of knowledge or belief, it tells how to update beliefs 

based upon observations (current data). 



Bayesian and what is Odds?16



IC* (inductive causation) algorithm

 In the framework of Pearl’s causality, algorithms IC and IC* provide a procedure 
to determine which causal connections among nodes in a network can be 
inferred from empirical observations. 

 Even in the presence of latent variables, indicating the limits of what can be 
learned without active manipulation of the system.

 Established to analyze causal influences (effective connectivity) among T2DM 
features.

 Learn a partially oriented DAG (pattern) with latent variables 

 The output P is an adjacency matrix, in which:

 P(i,j) = -1 if there is either a latent variable L such that i <-L-> j OR there is a 
directed edge from i->j.

 P(i,j) = -2 if there is a marked directed i-*>j edge.

 P(i,j) = P(j,i) = 1 if there is and undirected edge i—j.

 P(i,j) = P(j,i) = 2 if there is a latent variable L such that i<-L->j.

See Pearl, "Causality: Models, Reasoning, and Inference", 2000, p52 for more details.
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Latent Variable discovery 

 IC* algorithm is a constraint based methods with an informative graph, 

which applies conditional independence analysis to infer casual 

structures.

 The learned DAG will not be unique

 Latent variable:

 Some variables are unmeasured, called hidden or latent variables

 The space of possible structures with latent variables is unbounded.
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Step-wise Approach

 For all undiagnosed patients for a specific comorbidity Randomly chosen 

two consecutive time points of data [0 0].

 For all patients diagnosed with a specific comorbidity selected the two 

consecutive time points that represent the switch from no comorbidity to 

comorbidity [0 1].

 Randomly resample from the undiagnosed patients so that the same 

number of pairs appear as for diagnosed patients.
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Dynamic Bayesian Network and Latent variable 

Data and structure
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prediction Results for Liver Disease

No Latent variable       First Step using IC*         Second Step Using IC*

Predicted Latent variable

pattern VS T2DM 

complication and Features
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Thank you for listening!

Any Question?
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