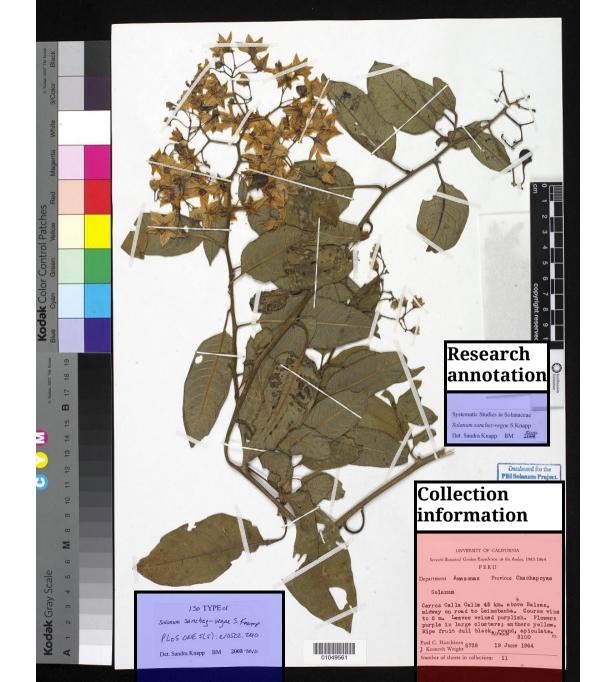
Identifying novel features from specimen data for the prediction of valuable collection trips

Nicky Nicolson^{1,2}, Allan Tucker²

1. Biodiversity Informatics & Spatial Analysis, Royal Botanic Gardens, Kew (UK). 2. Department of Computer Science, Brunel University London (UK).


Intelligent Data Analysis XVI, 26-28th October 2017, London (UK)

Outline

- 1. About the scientific domain:
 - 1. Examine a specimen
 - 2. Motivation for research
- 2. Method:
 - 1. Data exploration
 - 2. Data mining
 - 3. Applications:
 - 1. Data abstraction (grouping & feature definition)
 - 2. Classifier construction
- 3. Results
- 4. Conclusions

Seventh Botanical Garden Expedition to the Andes. 1963-1964

PERU

Department Amazonas Province Chachapoyas

Solanum

Cerros Calla Calla 45 km. above Balsas, midway on road to Leimebamba. Course vine to 6 m. Leaves veined purplish. Flowers purple in large clusters; anthers yellow. Ripe fruit dull black round, apiculate. Altitude 3100 m.

Paul C. Hutchison J. Kenneth Wright 5738 19 June 1964

Number of sheets in collection:

6/33

Seventh Botanical Garden Expedition to the Andes. 1963-1964

PERU

Department Amazonas Province Chachapoyas

WHAT

Solanum

Cerros Calla Calla 45 km. above Balsas, midway on road to Leimebamba. Course vine to 6 m. Leaves veined purplish. Flowers purple in large clusters; anthers yellow. Ripe fruit dull black round, apiculate. Almude 3100 m.

Paul C. Hutchison J. Kenneth Wright 5738 19 June 1964

Number of sheets in collection:

7/33

Seventh Botanical Garden Expedition to the Andes, 1963-1964

PERU

Department Amazonas Province Chachapoyas

WHAT

Solanum

WHERE
Cerros Calla Calla 45 km. above Balsas,
midway on road to Leimebamba. Course vine
to 6 m. Leaves veined purplish. Flowers
purple in large clusters; anthers yellow.
Ripe fruit dull black round, apiculate.
Altitude 3100 m.

Paul C. Hutchison J. Kenneth Wright 5738 19 June 1964

Number of sheets in collection:

-8/33

Seventh Botanical Garden Expedition to the Andes, 1963-1964

PERU

Department Amazonas Province Chachapoyas

WHAT

Solanum

WHERE
Cerros Calla Calla 45 km. above Balsas,
midway on road to Leimebamba. Course vine
to 6 m. Leaves veined purplish. Flowers
purple in large clusters; anthers yellow.
Ripe fruit dull black round, apiculate.
WHO

WHO

MIDDE TO THE TO THE

Paul C. Hutchison
J. Kenneth Wright

5738 19 June 1964

Number of sheets in collection:

9/33

Seventh Botanical Garden Expedition to the Andes, 1963-1964

PERU

Department Amazonas Province Chachapoyas

WHAT

Solanum

Cerros Calla Calla 45 km. above Balsas, midway on road to Leimebamba. Course vine to 6 m. Leaves veined purplish. Flowers purple in large clusters; anthers yellow. Ripe fruit dull black round, apiculate.

WHO

Output

Note: The serious course of the serious course

Paul C. Hutchison
J. Kenneth Wright

19 June 1964

Number of sheets in collection:

10 / 33

Seventh Botanical Garden Expedition to the Andes. 1963-1964 PERU

Province Chachapoyas Amaz onas Department

WHAT

Solanum

WHERE Cerros Calla Calla 45 km. above Balsas. midway on road to Leimebamba. Course vine to 6 m. Leaves veined purplish. Flowers purple in large clusters; anthers yellow. Ripe fruit dull black round, apiculate. m. WHO Paul C. Hutchison RECORD #

J. Kenneth Wright

19 June 1964

Number of sheets in collection:

5738

Seventh Botanical Garden Expedition to the Andes. 1963-1964 PERU

Amazonas Province Chachapoyas Department

WHAT

Solanum

J. Kenneth Wright

WHERE Cerros Calla Calla 45 km. above Balsas. midway on road to Leimebamba. Course vine to 6 m. Leaves veined purplish. Flowers purple in large clusters; anthers yellow. Ripe fruit dull black round, apiculate. 3100 m. WHO Paul C. Hutchison RECORD # WHEN 5738

19 June 1964

Number of sheets in collection:

12 / 33

Seventh Botanical Garden Expedition to the Andes, 1963-1964 WHY

PERU

Province Chachapoyas Ama z ona s Department

WHAT

Solanum

WHERE Cerros Calla Calla 45 km. above Balsas. midway on road to Leimebamba. Course vine to 6 m. Leaves veined purplish. Flowers purple in large clusters; anthers yellow. Ripe fruit dull black round, apiculate. m. WHO 3100 RECORD #

Paul C. Hutchison

J. Kenneth Wright

WHEN 19 June 1964

Number of sheets in collection:

5738

13 / 33

WHY Seventh Botanical Garden Expedition to the Andes, 1963-1964

PERU

Department Amazonas Province Chachapoyas

WHAT

Solanum

WHERE
Cerros Calla Calla 45 km. above Balsas,
midway on road to Leimebamba. Course vine
to 6 m. Leaves veined purplish. Flowers
purple in large clusters; anthers yellow.
Ripe fruit dull black round, apiculate.
WHO

WHO

MIDDER TOURS T

Paul C. Hutchison 5738

J. Kenneth Wright

WHEN 19

19 June 1964

Number of sheets in collection:

14 / 33

WHY Seventh Botanical Garden Expedition to the Andes, 1963-1964

PERU

Department Amazonas Province Chachapoyas

WHAT

Solanum

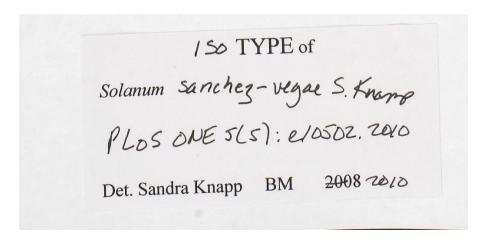
WHERE
Cerros Calla Calla 45 km. above Balsas,
midway on road to Leimebamba. Course vine
to 6 m. Leaves veined purplish. Flowers
purple in large clusters; anthers yellow.
Ripe fruit dull black round, apiculate.
WHO

Paul C. Hutchison FECORD # 5738

J. Kenneth Wright

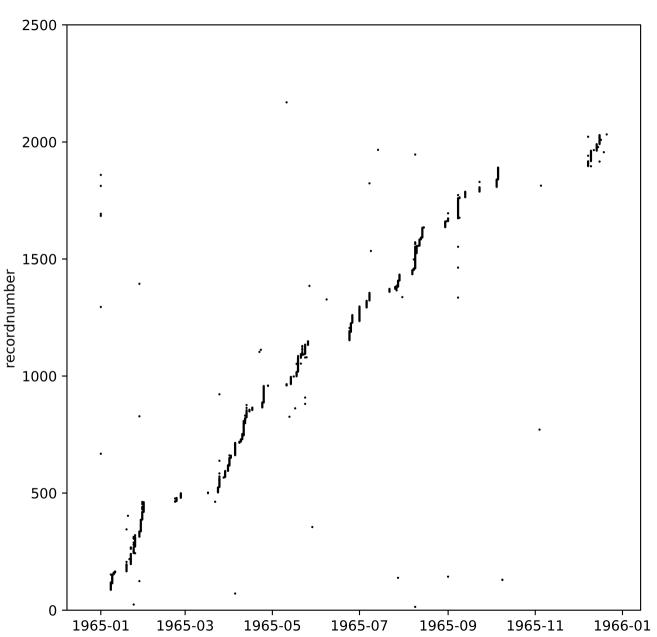
WHEN 19 June 1964

Number of sheets in collection:

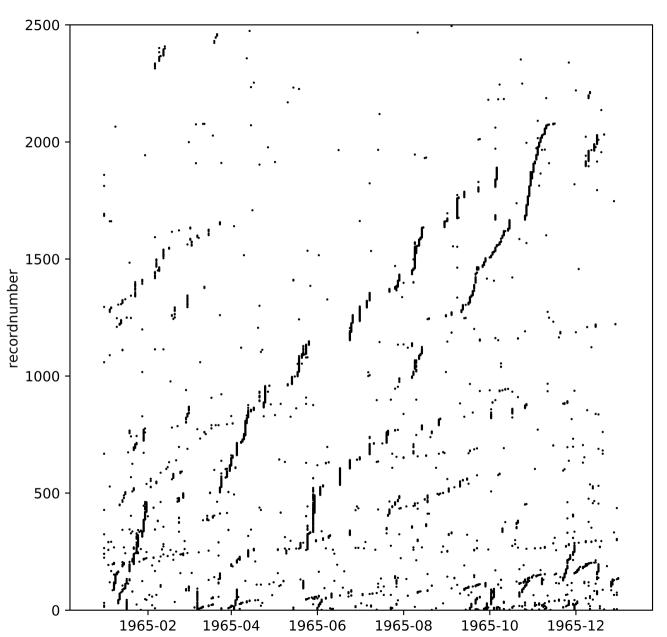

 $\frac{15}{33}$

Motivation: exploring species discovery

Species discovery on-going: 2000 new species described / year in higher plants.


Reviewing example specimen (via collection & research annotations):

- Early 1960s: collected from field
- 2010: recognised as a species new to science (and published)
- Specimen annotated, digital record flagged as a "type"



Can we direct effort to field collection localities / institutional collections that will yield new species?

Data mining: preparation

Data

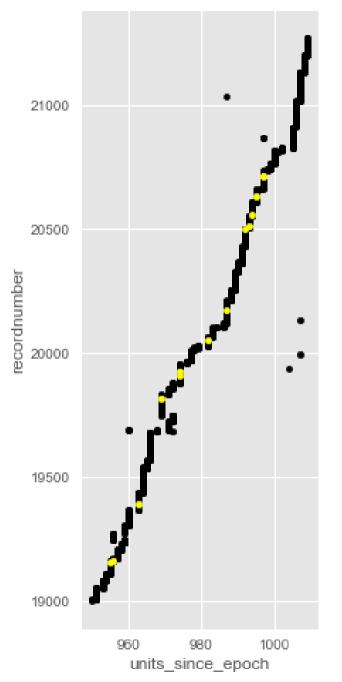
- c 3.5 million specimens from a single political country (Brazil)
- data downloaded from Global Biodiversity Information Facility (GBIF)

Feature definition

- Numeric feature-set:
 - eventdate days since 1970-01-01
 - recordnumber sequential and unique in context of particular primary collector
- Collector name transcription, e.g. Gert Hatcshbach
- Lexical feature-set:
 - First initial
 - First upper-case of surname
 - First lower-case of surname
 - Last lower-case of surname
 - e.g. Gert Hatcshbach -> Gert Hatcshbach -> G, H, a, h

Data mining: process (1/4)

Cluster


- DBSCAN: selected as we want to detect elongated clusters
 - featuresets: lexical & numeric
 - episilon: 300
 - min_samples: 2
- Expert analysis
 - variable transcriptions -> multiple logical collectors assigned to a single cluster
- Computational post-processing
 - clusters pessimistically broken into subclusters, based on lexical examination of transcriptions

Data mining: process (2/4)

Cluster

Classify

- Expert analysis identified a common problem:
 - variation in transcription results in variation in lexical featureset -> logical collectors assigned to separate clusters
 - visualisation using scatter plot show this
- Classify:
 - train decision tree on numeric featureset, to predict cluster identifier
 - commonly confused classes candidates for joining
 - computationally assessed for lexical similarity
 - iterative process (join affects overlap calculation)

Data mining: process (3/4)

Cluster

Classify

Join

- Aim to gather all data to get a career grouping for a single logical collector
- Two stage process, clusters are joined if:
 - Most frequently occurring transcription is shared and all variant transcriptions agree
 - Clusters share external identifier in bibliographic author dataset

Data mining: process (4/4)

Cluster

Classify

Join

Detect collection trips

- For each collector's career, pass all samples into DBSCAN to detect collecting trips
- Create and apply a trip identifier to each "collecting trip" cluster

Application: grouping

Grouping

- 1. Baseline grouped by transcribed primary collector name
- 2. Collector grouped by data-mined collector entity
- 3. Trip grouped by data-mined collecting trip entity

Application: feature definition

Grouping

Feature definition

- Temporal:
 - Start year
- Scale:
 - # specimens
 - Range of numbers allocated
- Rate:
 - Slope of line of best fit
 - Correlation score
- Character:
 - Specialist (T/F)
 - Generalist (T/F)
- Experience:
 - # previous collections
- Class: species discovery value:
 - Does the grouping include material used as a type (T/F)

Application: classifier construction

Grouping

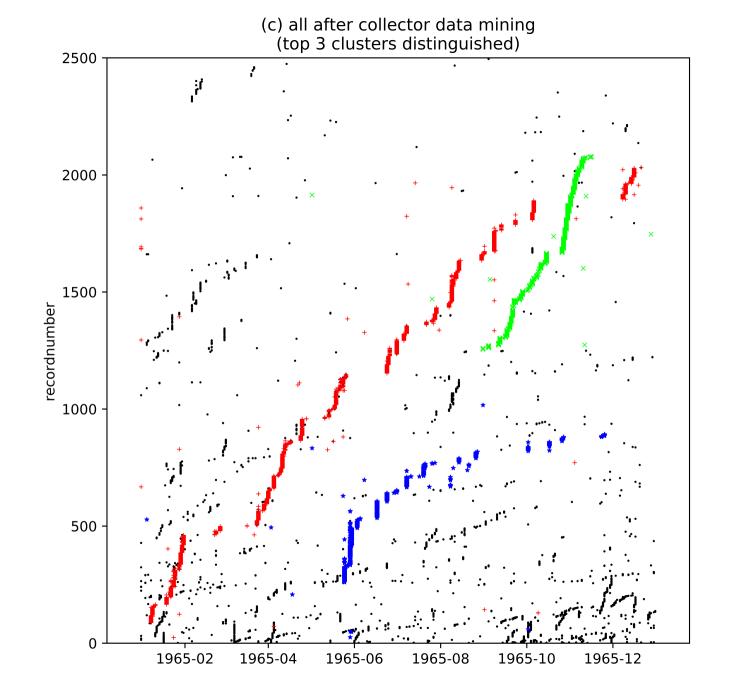
Feature definition

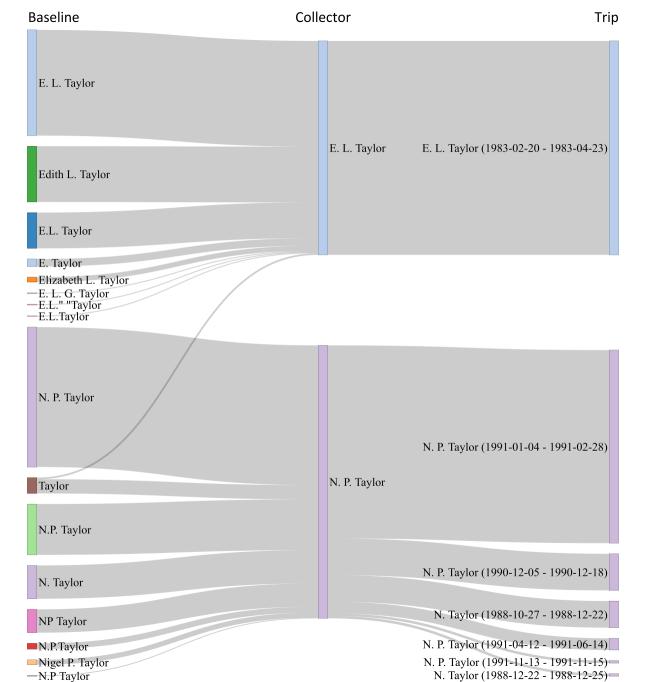
Classifier construction

- Decision tree classifier used to predict species discovery value.
- Datasets downsampled to balance class variable.
- 10-fold stratified cross-validation.
- Feature selection.

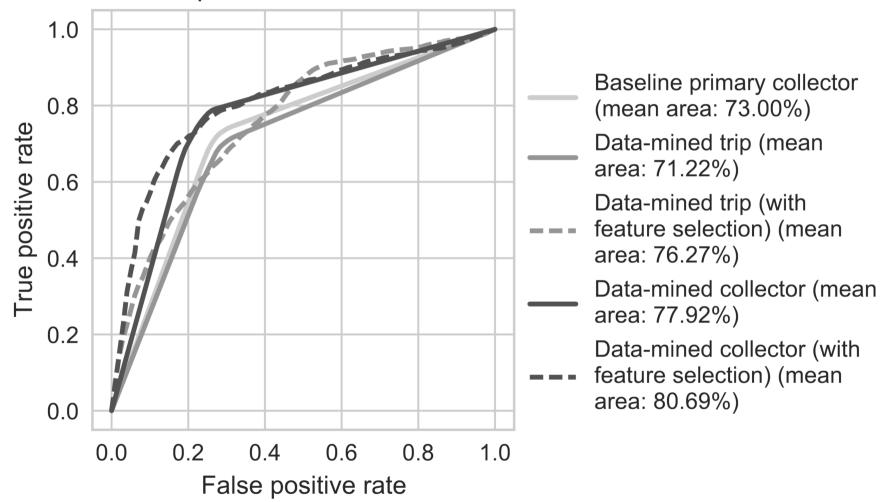
Results: data mining

Raw data:


- 131582 unique collector team transcriptions
- 41511 unique primary collector name transcriptions


Data mining process:

- Step 1: DBSCAN identified 42096 clusters; lexically post-processed to 51192 clusters
- Step 2: Resolved via decision-tree classifier to 44768 clusters
- Step 3: Joined to 19706 clusters representing collector entities
- Step 4: 79012 different collecting trips were identified


Species discovery value:

• 1127 (5.7%) of collectors and 3412 (4.3%) of trips collected specimens later labelled as type specimens.

Baseline and data-mined collector and trip, with feature selection

Conclusions

- Specimens visible end point of a hidden collecting process
- Machine learning techniques help to uncover the hidden processes
- Data mining results reshape the data, build models steps towards understanding species discovery
- Techniques also have practical applications efficiencies in data mobilisation

Further information

Identifying novel features from specimen data for the prediction of valuable collection trips

Nicky Nicolson^{1,2}, Allan Tucker²

1. Biodiversity Informatics & Spatial Analysis, Royal Botanic Gardens, Kew (UK). 2. Department of Computer Science, Brunel University London (UK).

n.nicolson@kew.org / @nickynicolson

https://nickynicolson.github.io/ida-2017-specimen-features/presentation.html

Acknowledgements

Data providers for sharing their specimen data

Reviewers for valuable comments